- p. 671: 25-49 odd, 53, 62-64, 68, 69-75 odd, 78-82
- 25. (a) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{2n}{3n+1} = \frac{2}{3}$, so the sequence $\{a_n\}$ is convergent.
 - (b) Because $\lim_{n\to\infty} a_n = \frac{2}{3} \neq 0$, the series $\sum_{n=1}^{\infty} a_n$ is divergent by the Test for Divergence.
- 27. $3-4+\frac{16}{3}-\frac{64}{9}+\cdots$ is a geometric series with ratio $r=-\frac{4}{3}$. Since $|r|=\frac{4}{3}>1$, the series diverges.
- 29. $10-2+0.4-0.08+\cdots$ is a geometric series with ratio $r=-\frac{2}{10}=-\frac{1}{5}$. Since $|r|=\frac{1}{5}<1$, the series converges to $\frac{a}{1-r}=\frac{10}{1-(-1/5)}=\frac{10}{6/5}=\frac{50}{6}=\frac{25}{3}$.
- 31. $\sum_{n=1}^{\infty} 12(0.73)^{n-1}$ is a geometric series with first term a = 12 and ratio r = 0.73. Since |r| = 0.73 < 1, the series converges to $\frac{a}{1-r} = \frac{12}{1-0.73} = \frac{12}{0.27} = \frac{12(100)}{27} = \frac{400}{9}$.
- 33. $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n} = \frac{1}{4} \sum_{n=1}^{\infty} \left(-\frac{3}{4} \right)^{n-1}$. The latter series is geometric series with a=1 and ratio $r=-\frac{3}{4}$. Since $|r|=\frac{3}{4}<1$, it converges to $\frac{1}{1-(-3/4)}=\frac{4}{7}$. Thus, the given series converges to $\frac{1}{4}\left(\frac{4}{7}\right)=\frac{1}{7}$.
- 35. $\sum_{n=1}^{\infty} \frac{e^{2n}}{6^{n-1}} = \sum_{n=1}^{\infty} \frac{(e^2)^n}{6^n 6^{-1}} = 6\sum_{n=1}^{\infty} \left(\frac{e^2}{6}\right)^n$ is a geometric series with ratio $r = \frac{e^2}{6}$. Since $|r| = \frac{e^2}{6} \approx 1.23 > 1$, the series diverges.
- 37. $3 \frac{2}{3} + \frac{4}{27} \frac{8}{243} + \dots = \sum_{n=0}^{\infty} 3 \left(\frac{-2}{9} \right)^n$ is a geometric series with a = 3 and $r = -\frac{2}{9}$. Because $|r| = \frac{2}{9} < 1$, the series converges to $\frac{a}{1-r} = \frac{3}{1-(-2/9)} = \frac{3}{11/9} = \frac{27}{11}$, choice (C).
- 39. $\frac{1}{3} + \frac{2}{9} + \frac{1}{27} + \frac{2}{81} + \frac{1}{243} + \frac{2}{729} + \dots = \left(\frac{1}{3} + \frac{1}{27} + \frac{1}{243} + \dots\right) + \left(\frac{2}{9} + \frac{2}{81} + \frac{2}{729} + \dots\right)$, which are both convergent geometric series with sums $\frac{1}{3} + \frac{1}{2} = \frac{1}{2}$ and $\frac{1}{3} + \frac{1}{2} = \frac{1}{2}$, so the original series converges to $\frac{3}{8} + \frac{1}{4} = \frac{5}{8}$.
- 41. $\sum_{n=1}^{\infty} \frac{k^2}{k^2 2k + 5}$ diverges by the Test for Divergence because $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{k^2}{k^2 2k + 5}$ $= \lim_{n \to \infty} \frac{1}{1 \frac{2}{k} + \frac{5}{k^2}} = 1 \neq 0.$
- 43. $\sum_{n=1}^{\infty} \left[(-0.2)^n + (0.6)^{n-1} \right] = \sum_{n=1}^{\infty} (-0.2)^n + \sum_{n=1}^{\infty} (0.6)^{n-1}$ [sum of two geometric series] $= \frac{-0.2}{1 (-0.2)} + \frac{1}{1 0.6} = -\frac{1}{6} + \frac{5}{2} = \frac{7}{3}$ The series converges to $\frac{7}{3}$.

45.
$$\sum_{n=1}^{\infty} \frac{2^n + 4^n}{e^n}$$
 diverges by the Test for Divergence because
$$\lim_{n \to \infty} \frac{2^n + 4^n}{e^n} = \lim_{n \to \infty} \left(\frac{2^n}{e^n} + \frac{4^n}{e^n} \right)$$
$$\geq \lim_{n \to \infty} \left(\frac{4}{e^n} \right)^n = \infty \operatorname{since} \frac{4}{e^n} > 1.$$

- 47. $\sum_{n=1}^{\infty} \frac{1}{1 + \left(\frac{2}{3}\right)^n}$ diverges by the Test for Divergence because $\lim_{n \to \infty} \frac{1}{1 + \left(\frac{2}{3}\right)^n} = \frac{1}{1 + 0} = 1 \neq 0.$
- 49. $\sum_{k=0}^{\infty} \left(\sqrt{2}\right)^{-k} = \sum_{k=0}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^k$ is a geometric series with first term $a = \left(\frac{1}{\sqrt{2}}\right)^0 = 1$ and ratio $r = \frac{1}{\sqrt{2}}$. Because |r| < 1, the series converges to $\frac{1}{1-1/\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}-1} \approx 3.414$.
- 53. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{e^n}{n^2} = \lim_{x\to\infty} \frac{e^x}{x^2} = \lim_{x\to\infty} \frac{e^x}{2x} = \lim_{x\to\infty} \frac{e^x}{2} = \infty \neq 0$, so $\sum_{n=1}^{\infty} \frac{e^n}{n^2}$ diverges by the Test for Divergence.
- 62. $0.8 = \frac{8}{10} + \frac{8}{10^2} + \frac{8}{10^3} + \cdots$ is a geometric series with $a = \frac{8}{10}$ and $r = \frac{1}{10}$. It converges to $\frac{\frac{8}{10}}{1 \frac{1}{10}} = \frac{8}{9}$.
- 63. $0.\overline{46} = \frac{46}{100} + \frac{46}{100^2} + \cdots$ is a geometric series with $a = \frac{46}{100}$ and $r = \frac{1}{100}$. It converges to $\frac{4\%_{100}}{1 1/100} = 4\%_{99}$.
- 64. $2.\overline{516} = 2 + \frac{516}{10^3} + \frac{2514}{10^6} + \cdots$. Now $\frac{516}{10^3} + \frac{2514}{10^6} + \cdots$ is a geometric series with $a = \frac{516}{10^3}$ and $r = \frac{1}{10^3}$. It converges to $\frac{a}{1-r} = \frac{516/10^3}{1-1/10^3} = \frac{516/10^3}{999/10^3} = \frac{516}{999}$. Thus, $2.\overline{516} = 2 + \frac{516}{999} = \frac{2514}{999} = \frac{838}{333}$.
- 68. $0.5\overline{29} = 0.5 + \frac{29}{10^3} + \frac{29}{10^5} + \frac{29}{10^7} + \cdots$. Now $\frac{29}{10^3} + \frac{29}{10^5} + \frac{29}{10^7} + \cdots$ is a geometric series with $a = \frac{29}{10^3}$ and $r = \frac{1}{10^2}$. It converges to $\frac{a}{1-r} = \frac{29/10^3}{1-1/10^2} = \frac{29}{990}$, so $0.5\overline{29} = 0.5 + \frac{29}{990} = \frac{262}{495}$, choice (B).
- 69. $\sum_{n=1}^{\infty} (-5)^n x^n = \sum_{n=1}^{\infty} (-5x)^n \text{ is a geometric series with } r = -5x, \text{ so the series converges } \Leftrightarrow |r| < 1 \Leftrightarrow |-5x| < 1 \Leftrightarrow |x| < \frac{1}{5}, \text{ that is, } -\frac{1}{5} < x < \frac{1}{5}. \text{ In that case, the sum of the series is } \frac{-5x}{1 (-5x)} = \frac{-5x}{1 + 5x}.$
- 71. $\sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n} = \sum_{n=0}^{\infty} \left(\frac{x-2}{3}\right)^n \text{ is a geometric series with } r = \frac{x-2}{3}, \text{ so the series converges } \Leftrightarrow |r| < 1 \Leftrightarrow \left|\frac{x-2}{3}\right| < 1 \Leftrightarrow -1 < \frac{x-2}{3} < 1 \Leftrightarrow -3 < x 2 < 3 \Leftrightarrow -1 < x < 5. \text{ In that case, the sum of the series is } \frac{1}{1-\frac{x-2}{3}} = \frac{1}{\frac{3-(x-2)}{3}} = \frac{3}{5-x}.$

- 73. $\sum_{n=0}^{\infty} \frac{2^n}{x^n} = \sum_{n=0}^{\infty} \left(\frac{2}{x}\right)^n \text{ is a geometric series with } r = \frac{2}{x}, \text{ so the series converges } \Leftrightarrow |r| < 1 \Leftrightarrow \left|\frac{2}{x}\right| < 1 \Leftrightarrow 2 < |x| \Leftrightarrow x < -2 \text{ or } x > 2. \text{ In that case, the sum of the series is } \frac{1}{1 2/x} = \frac{x}{x 2}.$
- 75. $\sum_{n=0}^{\infty} e^{nx} = \sum_{n=0}^{\infty} (e^x)^n \text{ is a geometric series with } r = e^x, \text{ so the series converges } \Leftrightarrow |r| < 1 \Leftrightarrow |e^x| < 1 \Leftrightarrow -1 < e^x < 1 \Leftrightarrow 0 < e^x < 1 \Leftrightarrow x < 0. \text{ In that case, the sum of the series is } \frac{1}{1 e^x}.$
- 78. Series I, $\sum_{n=1}^{\infty} \frac{8n}{n+8}$ diverges by the Test for Divergence because $\lim_{n\to\infty} \frac{8n}{n+8} = \lim_{n\to\infty} \frac{8}{1+\frac{8}{n}} = 8 \neq 0$. The series $\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n$ is a geometric series with r = 0.25 < 1, so it converges to $\frac{1}{1-\frac{1}{4}} = \frac{4}{3}$. Therefore, series II, $\sum_{n=0}^{\infty} \frac{6}{4^n} = 6 \cdot \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n$ converges to $6 \cdot \frac{4}{3} = 8$. Series III, $\sum_{n=1}^{\infty} \frac{8}{n} = 8 \cdot \sum_{n=1}^{\infty} \frac{8}{n}$ is a constant multiple of the divergent harmonic series, so it diverges. Thus, the correct choice is (**B**), only series II converges to 8.
- 79. If a > 1, then $a^{-1} = \frac{1}{a} < 1 \Rightarrow \sum_{n=0}^{\infty} a^{-n} = 1 + \sum_{n=1}^{\infty} \frac{1}{a^n}$. The series $\sum_{n=1}^{\infty} \frac{1}{a^n}$ is geometric with a = 1 and r = a, so its sum is $\frac{1}{1-a}$. Therefore, $\sum_{n=0}^{\infty} a^{-n} = 1 + \frac{1}{1-a} = \frac{1-a+1}{1-a} = \frac{-a}{1-a} = \frac{a}{a-1}$, choice (A).
- 80. If $x = \frac{2}{3}$, then $\sum_{n=0}^{\infty} \frac{1}{2} x (2x^2)^n = \sum_{n=0}^{\infty} \frac{1}{2} \frac{2}{3} (\frac{2\cdot 4}{9})^n = \sum_{n=0}^{\infty} \frac{1}{3} (\frac{8}{9})^n$ is geometric with $a = \frac{1}{3}$ and $r = \frac{8}{9} < 1$, so it converges to $\frac{a}{1-r} = \frac{\frac{1}{3}}{1-\frac{8}{9}} = 3$. If $x = -\frac{3}{4}$, then $\sum_{n=0}^{\infty} \frac{1}{2} x (2x^2)^n = \sum_{n=0}^{\infty} \frac{1}{2} (-\frac{3}{4}) (-\frac{2\cdot 3}{4})^n = \sum_{n=0}^{\infty} -\frac{3}{8} \cdot (-\frac{3}{2})^n$ is geometric with $r = -\frac{3}{2}$. Because $|r| = \frac{3}{2} > 1$, this series diverges. Thus the correct choice is $(\mathbf{A}), \frac{2}{3}$ only.
- 81. $\sum_{n=1}^{\infty} \frac{10 \cdot 3^n + 15 \cdot 2^n}{5^n} = \sum_{n=1}^{\infty} \frac{10 \cdot 3^n}{5^n} + \sum_{n=1}^{\infty} \frac{15 \cdot 2^n}{5^n} = \sum_{n=1}^{\infty} 10 \cdot \left(\frac{3}{5}\right)^n + \sum_{n=1}^{\infty} 15 \cdot \left(\frac{2}{5}\right)^n.$ The first series is a geometric series with $a = 10 \cdot \frac{3}{5} = 6$ and $r = \frac{3}{5} = 0.6 < 1$, so its sum is $\frac{a}{1-r} = \frac{6}{1-0.6} = 15$. The second series is geometric with $a = 15 \cdot \frac{2}{5} = 6$ and $r = \frac{2}{5} = 0.4 < 1$, so its sum is $\frac{a}{1-r} = \frac{6}{1-0.4} = 10$. Therefore, by Theorem 2, the sum of $\sum_{n=1}^{\infty} \frac{10 \cdot 3^n + 15 \cdot 2^n}{5^n}$ is 15 + 10 = 25, choice (B).
- 82. $\lim_{n\to\infty} \frac{en}{3n+1} = \lim_{n\to\infty} \frac{e}{3+\frac{1}{n}} = \frac{e}{n} \neq 0$, so series (**D**) diverges.