Assn 7

- 1. Let M = 2x 1 and N = 3y + 7 so that $M_y = 0 = N_x$. From $f_x = 2x 1$ we obtain $f = x^2 x + h(y)$, h'(y) = 3y + 7, and $h(y) = \frac{3}{2}y^2 + 7y$. A solution is $x^2 x + \frac{3}{2}y^2 + 7y = c$.
- 3. Let M = 5x + 4y and $N = 4x 8y^3$ so that $M_y = 4 = N_x$. From $f_x = 5x + 4y$ we obtain $f = \frac{5}{2}x^2 + 4xy + h(y)$, $h'(y) = -8y^3$, and $h(y) = -2y^4$. A solution is $\frac{5}{2}x^2 + 4xy 2y^4 = c$.
- 5. Let $M = 2y^2x 3$ and $N = 2yx^2 + 4$ so that $M_y = 4xy = N_x$. From $f_x = 2y^2x 3$ we obtain $f = x^2y^2 3x + h(y)$, h'(y) = 4, and h(y) = 4y. A solution is $x^2y^2 3x + 4y = c$.
- 7. Let $M = x^2 y^2$ and $N = x^2 2xy$ so that $M_y = -2y$ and $N_x = 2x 2y$. The equation is not exact.
- 9. Let $M = y^3 y^2 \sin x x$ and $N = 3xy^2 + 2y \cos x$ so that $M_y = 3y^2 2y \sin x = N_x$. From $f_x = y^3 y^2 \sin x x$ we obtain $f = xy^3 + y^2 \cos x \frac{1}{2}x^2 + h(y)$, h'(y) = 0, and h(y) = 0. A solution is $xy^3 + y^2 \cos x \frac{1}{2}x^2 = c$.
- 11. Let $M = y \ln y e^{-xy}$ and $N = 1/y + x \ln y$ so that $M_y = 1 + \ln y + xe^{-xy}$ and $N_x = \ln y$. The equation is not exact.
- 13. Let $M = y 6x^2 2xe^x$ and N = x so that $M_y = 1 = N_x$. From $f_x = y 6x^2 2xe^x$ we obtain $f = xy 2x^3 2xe^x + 2e^x + h(y)$, h'(y) = 0, and h(y) = 0. A solution is $xy 2x^3 2xe^x + 2e^x = c$.
- **15.** Let $M = x^2y^3 1/(1+9x^2)$ and $N = x^3y^2$ so that $M_y = 3x^2y^2 = N_x$. From $f_x = x^2y^3 1/(1+9x^2)$ we obtain $f = \frac{1}{3}x^3y^3 \frac{1}{3}\arctan(3x) + h(y)$, h'(y) = 0, and h(y) = 0. A solution is $x^3y^3 \arctan(3x) = c$.
- 17. Let $M = \tan x \sin x \sin y$ and $N = \cos x \cos y$ so that $M_y = -\sin x \cos y = N_x$. From $f_x = \tan x \sin x \sin y$ we obtain $f = \ln|\sec x| + \cos x \sin y + h(y)$, h'(y) = 0, and h(y) = 0. A solution is $\ln|\sec x| + \cos x \sin y = c$.
- 19. Let $M = 4t^3y 15t^2 y$ and $N = t^4 + 3y^2 t$ so that $M_y = 4t^3 1 = N_t$. From $f_t = 4t^3y 15t^2 y$ we obtain $f = t^4y 5t^3 ty + h(y)$, $h'(y) = 3y^2$, and $h(y) = y^3$. A solution is $t^4y 5t^3 ty + y^3 = c$.
- **21.** Let $M = x^2 + 2xy + y^2$ and $N = 2xy + x^2 1$ so that $M_y = 2(x+y) = N_x$. From $f_x = x^2 + 2xy + y^2$ we obtain $f = \frac{1}{3}x^3 + x^2y + xy^2 + h(y)$, h'(y) = -1, and h(y) = -y. The solution is $\frac{1}{3}x^3 + x^2y + xy^2 y = c$. If y(1) = 1 then c = 4/3 and a solution of the initial-value problem is $\frac{1}{3}x^3 + x^2y + xy^2 y = \frac{4}{3}$.
- 23. Let M=4y+2t-5 and N=6y+4t-1 so that $M_y=4=N_t$. From $f_t=4y+2t-5$ we obtain $f=4ty+t^2-5t+h(y), h'(y)=6y-1,$ and $h(y)=3y^2-y.$ The solution is $4ty+t^2-5t+3y^2-y=c.$ If y(-1)=2 then c=8 and a solution of the initial-value problem is $4ty+t^2-5t+3y^2-y=8.$

- 25. Let $M=y^2\cos x-3x^2y-2x$ and $N=2y\sin x-x^3+\ln y$ so that $M_y=2y\cos x-3x^2=N_x$. From $f_x=y^2\cos x-3x^2y-2x$ we obtain $f=y^2\sin x-x^3y-x^2+h(y), \ h'(y)=\ln y, \ \text{and} \ h(y)=y\ln y-y.$ The solution is $y^2\sin x-x^3y-x^2+y\ln y-y=c$. If y(0)=e then c=0 and a solution of the initial-value problem is $y^2\sin x-x^3y-x^2+y\ln y-y=0$.
- **27.** Equating $M_y = 3y^2 + 4kxy^3$ and $N_x = 3y^2 + 40xy^3$ we obtain k = 10.
- 29. Let $M = -x^2y^2 \sin x + 2xy^2 \cos x$ and $N = 2x^2y \cos x$ so that $M_y = -2x^2y \sin x + 4xy \cos x = N_x$. From $f_y = 2x^2y \cos x$ we obtain $f = x^2y^2 \cos x + h(y)$, h'(y) = 0, and h(y) = 0. A solution of the differential equation is $x^2y^2 \cos x = c$.
- 31. We note that $(M_y N_x)/N = 1/x$, so an integrating factor is $e^{\int dx/x} = x$. Let $M = 2xy^2 + 3x^2$ and $N = 2x^2y$ so that $M_y = 4xy = N_x$. From $f_x = 2xy^2 + 3x^2$ we obtain $f = x^2y^2 + x^3 + h(y)$, h'(y) = 0, and h(y) = 0. A solution of the differential equation is $x^2y^2 + x^3 = c$.
- 33. We note that $(N_x M_y)/M = 2/y$, so an integrating factor is $e^{\int 2dy/y} = y^2$. Let $M = 6xy^3$ and $N = 4y^3 + 9x^2y^2$ so that $M_y = 18xy^2 = N_x$. From $f_x = 6xy^3$ we obtain $f = 3x^2y^3 + h(y)$, $h'(y) = 4y^3$, and $h(y) = y^4$. A solution of the differential equation is $3x^2y^3 + y^4 = c$.
- **35.** We note that $(M_y N_x)/N = 3$, so an integrating factor is $e^{\int 3 dx} = e^{3x}$. Let

$$M = (10 - 6y + e^{-3x})e^{3x} = 10e^{3x} - 6ye^{3x} + 1$$

and

$$N = -2e^{3x},$$

so that $M_y = -6e^{3x} = N_x$. From $f_x = 10e^{3x} - 6ye^{3x} + 1$ we obtain $f = \frac{10}{3}e^{3x} - 2ye^{3x} + x + h(y)$, h'(y) = 0, and h(y) = 0. A solution of the differential equation is $\frac{10}{3}e^{3x} - 2ye^{3x} + x = c$.

37. We note that $(M_y - N_x)/N = 2x/(4+x^2)$, so an integrating factor is $e^{-2\int x\,dx/(4+x^2)} = 1/(4+x^2)$. Let $M = x/(4+x^2)$ and $N = (x^2y+4y)/(4+x^2) = y$, so that $M_y = 0 = N_x$. From $f_x = x(4+x^2)$ we obtain $f = \frac{1}{2}\ln(4+x^2) + h(y)$, h'(y) = y, and $h(y) = \frac{1}{2}y^2$. A solution of the differential equation is $\frac{1}{2}\ln(4+x^2) + \frac{1}{2}y^2 = c$.

39. (a) Implicitly differentiating $x^3 + 2x^2y + y^2 = c$ and solving for dy/dx we obtain

$$3x^2 + 2x^2 \frac{dy}{dx} + 4xy + 2y \frac{dy}{dx} = 0$$
 and $\frac{dy}{dx} = -\frac{3x^2 + 4xy}{2x^2 + 2y}$.

By writing the last equation in differential form we get $(4xy + 3x^2)dx + (2y + 2x^2)dy = 0$.

- (b) Setting x = 0 and y = -2 in $x^3 + 2x^2y + y^2 = c$ we find c = 4, and setting x = y = 1 we also find c = 4. Thus, both initial conditions determine the same implicit solution.
- (c) Solving $x^3 + 2x^2y + y^2 = 4$ for y we get

$$y_1(x) = -x^2 - \sqrt{4 - x^3 + x^4}$$

and

$$y_2(x) = -x^2 + \sqrt{4 - x^3 + x^4}$$
.

Observe in the figure that $y_1(0) = -2$ and $y_2(1) = 1$.

