Assn 6

- 1. For y' 5y = 0 an integrating factor is $e^{-\int 5 dx} = e^{-5x}$ so that $\frac{d}{dx} \left[e^{-5x} y \right] = 0$ and $y = ce^{5x}$ for $-\infty < x < \infty$. There is no transient term.
- 3. For $y' + y = e^{3x}$ an integrating factor is $e^{\int dx} = e^x$ so that $\frac{d}{dx}[e^x y] = e^{4x}$ and $y = \frac{1}{4}e^{3x} + ce^{-x}$ for $-\infty < x < \infty$. The transient term is ce^{-x} .
- 5. For $y'+3x^2y=x^2$ an integrating factor is $e^{\int 3x^2\,dx}=e^{x^3}$ so that $\frac{d}{dx}\left[e^{x^3}y\right]=x^2e^{x^3}$ and $y=\frac{1}{3}+ce^{-x^3}$ for $-\infty < x < \infty$. The transient term is ce^{-x^3} .
- 7. For $y' + \frac{1}{x}y = \frac{1}{x^2}$ an integrating factor is $e^{\int (1/x)dx} = x$ so that $\frac{d}{dx}[xy] = \frac{1}{x}$ and $y = \frac{1}{x}\ln x + \frac{c}{x}$ for $0 < x < \infty$. The entire solution is transient.
- 9. For $y' \frac{1}{x}y = x \sin x$ an integrating factor is $e^{-\int (1/x)dx} = \frac{1}{x}$ so that $\frac{d}{dx} \left[\frac{1}{x}y \right] = \sin x$ and $y = cx x \cos x$ for $0 < x < \infty$. There is no transient term.
- 11. For $y' + \frac{4}{x}y = x^2 1$ an integrating factor is $e^{\int (4/x)dx} = x^4$ so that $\frac{d}{dx} \left[x^4 y \right] = x^6 x^4$ and $y = \frac{1}{7}x^3 \frac{1}{5}x + cx^{-4}$ for $0 < x < \infty$. The transient term is cx^{-4} .
- 13. For $y' + \left(1 + \frac{2}{x}\right)y = \frac{e^x}{x^2}$ an integrating factor is $e^{\int [1+(2/x)]dx} = x^2e^x$ so that $\frac{d}{dx}\left[x^2e^xy\right] = e^{2x}$ and $y = \frac{1}{2}\frac{e^x}{x^2} + \frac{ce^{-x}}{x^2}$ for $0 < x < \infty$. The transient term is $\frac{ce^{-x}}{x^2}$.
- 15. For $\frac{dx}{dy} \frac{4}{y}x = 4y^5$ an integrating factor is $e^{-\int (4/y)dy} = e^{\ln y^{-4}} = y^{-4}$ so that $\frac{d}{dy} \left[y^{-4}x \right] = 4y$ and $x = 2y^6 + cy^4$ for $0 < y < \infty$. There is no transient term.
- 17. For $y' + (\tan x)y = \sec x$ an integrating factor is $e^{\int \tan x \, dx} = \sec x$ so that $\frac{d}{dx} [(\sec x) y] = \sec^2 x$ and $y = \sin x + c \cos x$ for $-\pi/2 < x < \pi/2$. There is no transient term.
- 19. For $y' + \frac{x+2}{x+1}y = \frac{2xe^{-x}}{x+1}$ an integrating factor is $e^{\int [(x+2)/(x+1)]dx} = (x+1)e^x$, so $\frac{d}{dx}[(x+1)e^xy] = 2x$ and $y = \frac{x^2}{x+1}e^{-x} + \frac{c}{x+1}e^{-x}$ for $-1 < x < \infty$. The entire solution is transient.
- 21. For $\frac{dr}{d\theta} + r \sec \theta = \cos \theta$ an integrating factor is $e^{\int \sec \theta \, d\theta} = e^{\ln|\sec x + \tan x|} = \sec \theta + \tan \theta$ so that $\frac{d}{d\theta} \left[(\sec \theta + \tan \theta) r \right] = 1 + \sin \theta$ and $(\sec \theta + \tan \theta) r = \theta \cos \theta + c$ for $-\pi/2 < \theta < \pi/2$.

Assn 6

- 23. For $y' + \left(3 + \frac{1}{x}\right)y = \frac{e^{-3x}}{x}$ an integrating factor is $e^{\int [3+(1/x)]dx} = xe^{3x}$ so that $\frac{d}{dx}\left[xe^{3x}y\right] = 1$ and $y = e^{-3x} + \frac{ce^{-3x}}{x}$ for $0 < x < \infty$. The entire solution is transient.
- **25.** For $y' + \frac{1}{x}y = \frac{1}{x}e^x$ an integrating factor is $e^{\int (1/x)dx} = x$ so that $\frac{d}{dx}[xy] = e^x$ and $y = \frac{1}{x}e^x + \frac{c}{x}$ for $0 < x < \infty$. If y(1) = 2 then c = 2 e and $y = \frac{1}{x}e^x + \frac{2 e}{x}$.
- 27. For $\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$ an integrating factor is $e^{\int (R/L) dt} = e^{Rt/L}$ so that $\frac{d}{dt} \left[e^{Rt/L} i \right] = \frac{E}{L} e^{Rt/L}$ and $i = \frac{E}{R} + ce^{-Rt/L}$ for $-\infty < t < \infty$. If $i(0) = i_0$ then $c = i_0 E/R$ and $i = \frac{E}{R} + \left(i_0 \frac{E}{R} \right) e^{-Rt/L}$.
- 29. For $y' + \frac{1}{x+1}y = \frac{\ln x}{x+1}$ an integrating factor is $e^{\int [1/(x+1)]dx} = x+1$ so that $\frac{d}{dx}[(x+1)y] = \ln x$ and $y = \frac{x}{x+1} \ln x \frac{x}{x+1} + \frac{c}{x+1}$ for $0 < x < \infty$. If y(1) = 10 then c = 21 and $y = \frac{x}{x+1} \ln x \frac{x}{x+1} + \frac{21}{x+1}$.
- **31.** For y' + 2y = f(x) an integrating factor is e^{2x} so that

$$ye^{2x} = \begin{cases} \frac{1}{2}e^{2x} + c_1, & 0 \le x \le 3\\ c_2, & x > 3. \end{cases}$$

If y(0)=0 then $c_1=-1/2$ and for continuity we must have $c_2=\frac{1}{2}e^6-\frac{1}{2}$ so that

33. For y' + 2xy = f(x) an integrating factor is e^{x^2} so that

$$ye^{x^2} = \begin{cases} \frac{1}{2}e^{x^2} + c_1, & 0 \le x \le 1\\ c_2, & x > 1. \end{cases}$$

If y(0)=2 then $c_1=3/2$ and for continuity we must have $c_2=\frac{1}{2}e+\frac{3}{2}$ so that

35. We first solve the initial-value problem y' + 2y = 4x, y(0) = 3 on the interval [0,1]. The integrating factor is $e^{\int 2 dx} = e^{2x}$, so

$$\frac{d}{dx}[e^{2x}y] = 4xe^{2x}$$

$$e^{2x}y = \int 4xe^{2x}dx = 2xe^{2x} - e^{2x} + c_1$$

$$y = 2x - 1 + c_1e^{-2x}.$$

Using the initial condition, we find $y(0) = -1 + c_1 = 3$, so $c_1 = 4$ and $y = 2x - 1 + 4e^{-2x}$, $0 \le x \le 1$. Now, since $y(1) = 2 - 1 + 4e^{-2} = 1 + 4e^{-2}$, we solve the initial-value problem y' - (2/x)y = 4x, $y(1) = 1 + 4e^{-2}$ on the interval $(1, \infty)$. The integrating factor is $e^{\int (-2/x)dx} = e^{-2\ln x} = x^{-2}$, so

$$\frac{d}{dx}[x^{-2}y] = 4xx^{-2} = \frac{4}{x}$$
$$x^{-2}y = \int \frac{4}{x} dx = 4\ln x + c_2$$
$$y = 4x^2 \ln x + c_2 x^2.$$

(We use $\ln x$ instead of $\ln |x|$ because x > 1.) Using the initial condition we find $y(1) = c_2 = 1 + 4e^{-2}$, so $y = 4x^2 \ln x + (1 + 4e^{-2})x^2$, x > 1. Thus, the solution of the original initial-value problem is

$$y = \begin{cases} 2x - 1 + 4e^{-2x}, & 0 \le x \le 1\\ 4x^2 \ln x + (1 + 4e^{-2})x^2, & x > 1. \end{cases}$$

See Problem 42 in this section.

47. Writing the differential equation as $\frac{dE}{dt} + \frac{1}{RC}E = 0$ we see that an integrating factor is $e^{t/RC}$. Then

$$\frac{d}{dt}[e^{t/RC}E] = 0$$

$$e^{t/RC}E = c$$

$$E = ce^{-t/RC}$$

From $E(4) = ce^{-4/RC} = E_0$ we find $c = E_0 e^{4/RC}$. Thus, the solution of the initial-value problem is $E = E_0 e^{4/RC} e^{-t/RC} = E_0 e^{-(t-4)/RC}.$