Assn 5

11.

13.

15.

17.

19.

21.

23.

il
. From gdyzgd:c we obtain In |y| = 4In|z| 4+ c or y = c12*.

1

. From dy = sin 5x dr we obtain y = —g cos 5z +c.

From dy = —e 3% dr we obtain y = %8_31 + e

4

From e~2dy = ¢**dx we obtain 3¢~ %Y + 2% = .

2 3

L 1
From (y+2+ g) dy = 2% In z dz we obtain % + 2y +In |y| =%ln|:{:| _ §$3+C.

1
From —dy = ——
cscy sec?

—CcosYy = —%.“L‘— isin?x—i—c or 4dcosy=2r 4+ sin2r 4 c;.

dz or sinydy = — cos® zdr = —El,(l + cos 2z) dr we obtain

e¥ —e’ ‘ 11 2
From —— = dy = ———— dr we obtain — (e¥ + 1 ==(e"+1 + e
ErE (¢ + 1) =1 (e +1)

From %dSz k dr we obtain S = ce®”.
me;dp—(l+L)dP—dtweobtain1n|P|_1n|1_P|—t+csothat1n P ‘—
P-pP2° \P 1-P)] ' N B =
t
== t s i ZL
t—i—corl_P—cle.Solung for P we have P ot

y—2 ~ r—1 _( 5 ) | )
From y+3dy—$+4dx or (1 " )dy— 1 P dr we obtain ¥y — 5In|y + 3| =

5
4
r—>5ln|z4+4|+c or (:'H_ ) = c1e® 7Y,

1 2
From zdxr = - — dy we obtain 122 =sin~!y + ¢ or y = sin (% + cl).

11—y ’
1
From ﬁdx = 4dt we obtain tan"'z = 4t 4 ¢. Using x(7/4) = 1 we find ¢ = —37/4. The

3 3
solution of the initial-value problem is tan™' z = 4f — 2T or z = tan (4t — Tﬂ)
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1 1— 1 1 1
25. From —dy = L dr = (— — —) dz we obtain In|y| = —— — In|z| = ¢ or zy = e;e~1/*. Using
Y 72 2 T

y(—1) = —1 we find ¢; = e~!. The solution of the initial-value problem is zy = e 1=1/% or
y = e~(1+1/2) /g

27. Separating varables and mtegrating we obtain

dx

dy .1 .1
1/1—3;2—\/1_3;2:0 and sin” -z —sin Yy =-c

Setting » = 0 and y = v/3/2 we obtain ¢ = —7/3. Thus, an implicit solution of the initial-value

1

problem is sin ™! z—sin~ !y = —m /3. Solving for y and using an addition formula from trigonometry,

we get

31— 22
yzsin(sin_lx—l—%) =mcos%+1fl—$25in%=%+[+.

29, Separating variables, integrating from 4 to z, and using ¢ as a dummy variable of integration gives

T -
f ld—ydt=f et dt
4 y dt 4
T T
4—[1 e U dt

Iny(z) — lny(4) = f et dt

Iny(t)

Using the initial condition we have
ny(e) =y + [ it =1y [" = [T

Thus,

> _ 2
ylo) = el
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31. (a) The equilibrium solutions y(x) = 2 and y(x) = —2 satisfy the initial conditions y(0) = 2 and
y(0) = —2, respectively. Setting r = i and y =11in y = 2(1 + ce**) /(1 — ce*®) we obtain
14 ce 1

1=2 , 1l—ce=242ce, —1=23ce, and ec=——.
1—ce 3e

The solution of the corresponding initial-value problem is

_21_%6,45:—1 _23_e4zr—1
y= 11 lefe 1~ T3 oAt

(b) Separating variables and integrating yields
1 1
Zln|y—2| —Zln|y—|—2|—|—lncl =

Injy—2|—-Injy+ 2|+ Inc=4z

-2
1 | cy—2) | _ap
y+2
C y—2 _ Az
y+2
Solving for y we get y = 2(c 4 ¢¥)/(c — €**). The initial condition y(0) = —2 implies

2(c+1)/(c — 1) = —2 which yields ¢ = 0 and y(z) = —2. The initial condition y(0) = 2 does
not correspond to a value of ¢, and it must simply be recognized that y(z) = 2 is a solution of
the initial-value problem. Setting » = % and y = 1 in y = 2(c+e*®)/(c—e*®) leads to ¢ = —3e.
Thus, a solution of the initial-value problem is

el 3 _ ple—1

" 3¢ _ el 31 g1

33. Singular solutions of dy/dx = z4/1 — y? are y = —1 and y = 1. A singular solution of
(e + e %)dy/dx = y* is y = 0.

35. The singular solution y = 1 satisfies the initial-value problem.

~0.0040.002 | 0.002 0.004 *

0.98

Page 3




Assn 5

dyy
(y — 1)2 +0.01

37. Separating variables we obtain = dz. Then v

1.0004

1 r+c
10 tan~! 10(y—1)=z+c and y=1+ Et&n 10‘- . 1.0002

Setting x = 0 and y = 1 we obtain ¢ = 0. The solution is o
- =0 08402 0.002 0.004

y=1+ L tan L
= —fan — . 0.5998
10 10

0.3296
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39. Separating variables, we have

dy dy 1 1/2 1/2
(24 25 - 2 ) gy = de
(y+1—y T+y) "

y—v  y(l-y)(1+y)
Integrating, we get

1 1
1n|y|—§1n|1—y|—§ln|1—|—y|=x+c.

When y > 1, this becomes

lny—%ln(y—l)—%ln(y—i—l):ln =z+c

y? 1

Letting =0 and y = 2 we find ¢ = ln[2;‘\/§). Solving for y we get () = 2" /v 1e?* — 3, where
x> In(\/3/2).

When 0 < y < 1 we have

Y
1—y2

lny—%ln(l—y)—%ln(l—i—y):ln =z+c

Letting = 0 and y = 1 we find ¢ = In(1/v/3). Solving for y we get yo(z) = €*/v/e2* + 3, where
—00 < T < 00,

When —1 < y < 0 we have

—Y
-y

1 1
ln(—y)—§ln(1—y)—§ln(1—|—y]=1n =r+c

2

Letting x = 0 and y = —% we find ¢ = In(1/v/3). Solving for y we get ys(z) = —e%/v €2 13,
where —oco < r < oc.
When y < —1 we have
1 1 —y

In(—y) —=In(l —y) —-In(-1—y) =1

n(-y) — 5In(1 —y) — 5 In(-1 -y) nm
Letting # = 0 and y = —2 we find ¢ = In(2/v/3). Solving for y we get wy(z) = —2e%/\/4e?* — 3,
where z > In(+/3/2).

=r+c.

¥ ¥ ¥ Y
| 4 4 4
2| 2 2
1 2 3 4 5% 3 22 2 4 * —§ —2—=l_2 4 * 1 2 3 4 5%
e
-2 =2 -2 =
—4 _4 _4 -
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41. (a) Separating variables we have 2ydy = (2x + 1)dz. Integrating gives y> = 2> +  + c¢. When
y(—2)=-1wefinde= -1, 50y’ =22 +2—1andy = —+/22 + = — 1. The negative square
root is chosen because of the initial condition.

(b) From the figure, the largest interval of definition appears to be v
approximately (—oc, —1.65). j

i 3%

(c) Solving P+ -1 =0 we get © = —% + %,,/E , 50 the largest interval of definition is

(—o0, —% — % 5). The right-hand endpoint of the interval is excluded because y =
—v/2Z +  — 1 is not differentiable at this point.
P

47. We are looking for a function y(z) such that

2
dy
2
—=| =1
Using the positive square root gives

d d
%:,H_y? = —yzd:c = sin_lyzx—i—c.

NI
Thus a solution is y = sin(x + ¢). If we use the negative square root we obtain
y =sin(c — z) = —sin(z — ¢) = —sin(z + ¢1).

Note that when ¢ = ¢; = 0 and when ¢ = ¢; = 7/2 we obtain the well known particular solutions
iy =sinz, y = —sinz, y = cosx, and y = —cos z. Note also that ¥y = 1 and ¥y = —1 are singular
solutions.
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