Assn 25

In Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For example, in Problem 33, if \mathbf{K}_1 is chosen to be $\begin{pmatrix} 1 \\ 2-i \end{pmatrix}$ the solution has the form

$$\mathbf{X} = c_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} e^{4t}.$$

33. We have $\det(\mathbf{A} - \lambda \mathbf{I}) = \lambda^2 - 8\lambda + 17 = 0$. For $\lambda_1 = 4 + i$ we obtain

$$\mathbf{K}_1 = \begin{pmatrix} 2+i \\ 5 \end{pmatrix}$$

so that

$$\mathbf{X}_1 = \begin{pmatrix} 2+i \\ 5 \end{pmatrix} e^{(4+i)t} = \begin{pmatrix} 2\cos t - \sin t \\ 5\cos t \end{pmatrix} e^{4t} + i \begin{pmatrix} \cos t + 2\sin t \\ 5\sin t \end{pmatrix} e^{4t}.$$

Then

$$\mathbf{X} = c_1 \begin{pmatrix} 2\cos t - \sin t \\ 5\cos t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \cos t + 2\sin t \\ 5\sin t \end{pmatrix} e^{4t}.$$

In Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For example, in Problem 33, if \mathbf{K}_1 is chosen to be $\begin{pmatrix} 1 \\ 2-i \end{pmatrix}$ the solution has the form

$$\mathbf{X} = c_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} e^{4t}.$$

35. We have $det(\mathbf{A} - \lambda \mathbf{I}) = \lambda^2 - 8\lambda + 17 = 0$. For $\lambda_1 = 4 + i$ we obtain

$$\mathbf{K}_1 = \begin{pmatrix} -1 - i \\ 2 \end{pmatrix}$$

so that

$$\mathbf{X}_1 = \begin{pmatrix} -1 - i \\ 2 \end{pmatrix} e^{(4+i)t} = \begin{pmatrix} \sin t - \cos t \\ 2 \cos t \end{pmatrix} e^{4t} + i \begin{pmatrix} -\sin t - \cos t \\ 2 \sin t \end{pmatrix} e^{4t}.$$

$$\mathbf{X} = c_1 \begin{pmatrix} \sin t - \cos t \\ 2\cos t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} -\sin t - \cos t \\ 2\sin t \end{pmatrix} e^{4t}.$$

$$\mathbf{X} = c_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} e^{4t}.$$

37. We have $\det(\mathbf{A} - \lambda \mathbf{I}) = \lambda^2 + 9 = 0$. For $\lambda_1 = 3i$ we obtain

$$\mathbf{K}_1 = \begin{pmatrix} 4+3i \\ 5 \end{pmatrix}$$

so that

$$\mathbf{X}_{1} = \begin{pmatrix} 4+3i \\ 5 \end{pmatrix} e^{3it} = \begin{pmatrix} 4\cos 3t - 3\sin 3t \\ 5\cos 3t \end{pmatrix} + i \begin{pmatrix} 4\sin 3t + 3\cos 3t \\ 5\sin 3t \end{pmatrix}.$$

Then

$$\mathbf{X} = c_1 \begin{pmatrix} 4\cos 3t - 3\sin 3t \\ 5\cos 3t \end{pmatrix} + c_2 \begin{pmatrix} 4\sin 3t + 3\cos 3t \\ 5\sin 3t \end{pmatrix}.$$

In Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For example, in Problem 33, if \mathbf{K}_1 is chosen to be $\begin{pmatrix} 1 \\ 2-i \end{pmatrix}$ the solution has the form

$$\mathbf{X} = c_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} e^{4t}.$$

39. We have $\det(\mathbf{A} - \lambda \mathbf{I}) = -\lambda (\lambda^2 + 1) = 0$. For $\lambda_1 = 0$ we obtain

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

For $\lambda_2 = i$ we obtain

$$\mathbf{K}_2 = \begin{pmatrix} -i \\ i \\ 1 \end{pmatrix}$$

so that

$$\mathbf{X}_2 = \begin{pmatrix} -i \\ i \\ 1 \end{pmatrix} e^{it} = \begin{pmatrix} \sin t \\ -\sin t \\ \cos t \end{pmatrix} + i \begin{pmatrix} -\cos t \\ \cos t \\ \sin t \end{pmatrix}.$$

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} \sin t \\ -\sin t \\ \cos t \end{pmatrix} + c_3 \begin{pmatrix} -\cos t \\ \cos t \\ \sin t \end{pmatrix}.$$

$$\mathbf{X} = c_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} e^{4t}.$$

41. We have $det(\mathbf{A} - \lambda \mathbf{I}) = (1 - \lambda)(\lambda^2 - 2\lambda + 2) = 0$. For $\lambda_1 = 1$ we obtain

$$\mathbf{K}_1 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}.$$

For $\lambda_2 = 1 + i$ we obtain

$$\mathbf{K}_2 = \begin{pmatrix} 1 \\ i \\ i \end{pmatrix}$$

so that

$$\mathbf{X}_{2} = \begin{pmatrix} 1 \\ i \\ i \end{pmatrix} e^{(1+i)t} = \begin{pmatrix} \cos t \\ -\sin t \\ -\sin t \end{pmatrix} e^{t} + i \begin{pmatrix} \sin t \\ \cos t \\ \cos t \end{pmatrix} e^{t}.$$

$$\mathbf{X} = c_1 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} \cos t \\ -\sin t \\ -\sin t \end{pmatrix} e^t + c_3 \begin{pmatrix} \sin t \\ \cos t \\ \cos t \end{pmatrix} e^t.$$

$$\mathbf{X} = c_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} e^{4t}.$$

43. We have $\det(\mathbf{A} - \lambda \mathbf{I}) = (2 - \lambda)(\lambda^2 + 4\lambda + 13) = 0$. For $\lambda_1 = 2$ we obtain

$$\mathbf{K}_1 = \begin{pmatrix} 28 \\ -5 \\ 25 \end{pmatrix}.$$

For $\lambda_2 = -2 + 3i$ we obtain

$$\mathbf{K}_2 = \begin{pmatrix} 4+3i \\ -5 \\ 0 \end{pmatrix}$$

so that

$$\mathbf{X}_{2} = \begin{pmatrix} 4+3i \\ -5 \\ 0 \end{pmatrix} e^{(-2+3i)t} = \begin{pmatrix} 4\cos 3t - 3\sin 3t \\ -5\cos 3t \\ 0 \end{pmatrix} e^{-2t} + i \begin{pmatrix} 4\sin 3t + 3\cos 3t \\ -5\sin 3t \\ 0 \end{pmatrix} e^{-2t}.$$

$$\mathbf{X} = c_1 \begin{pmatrix} 28 \\ -5 \\ 25 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 4\cos 3t - 3\sin 3t \\ -5\cos 3t \\ 0 \end{pmatrix} e^{-2t} + c_3 \begin{pmatrix} 4\sin 3t + 3\cos 3t \\ -5\sin 3t \\ 0 \end{pmatrix} e^{-2t}.$$

$$\mathbf{X} = c_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} e^{4t}.$$

45. We have $\det(\mathbf{A} - \lambda \mathbf{I}) = (1 - \lambda)(\lambda^2 + 25) = 0$. For $\lambda_1 = 1$ we obtain

$$\mathbf{K}_1 = \begin{pmatrix} 25 \\ -7 \\ 6 \end{pmatrix}.$$

For $\lambda_2 = 5i$ we obtain

$$\mathbf{K}_2 = \begin{pmatrix} 1 + 5i \\ 1 \\ 1 \end{pmatrix}$$

so that

$$\mathbf{X}_{2} = \begin{pmatrix} 1+5i \\ 1 \\ 1 \end{pmatrix} e^{5it} = \begin{pmatrix} \cos 5t - 5\sin 5t \\ \cos 5t \\ \cos 5t \end{pmatrix} + i \begin{pmatrix} \sin 5t + 5\cos 5t \\ \sin 5t \\ \sin 5t \end{pmatrix}.$$

Then

$$\mathbf{X} = c_1 \begin{pmatrix} 25 \\ -7 \\ 6 \end{pmatrix} e^t + c_2 \begin{pmatrix} \cos 5t - 5\sin 5t \\ \cos 5t \\ \cos 5t \end{pmatrix} + c_3 \begin{pmatrix} \sin 5t + 5\cos 5t \\ \sin 5t \\ \sin 5t \end{pmatrix}.$$

If

$$\mathbf{X}(0) = \begin{pmatrix} 4 \\ 6 \\ -7 \end{pmatrix}$$

then $c_1 = c_2 = -1$ and $c_3 = 6$.