AsSsn 2

1. Solving —1/3=1/(1 4+ ¢1) we get c1 = —4. The solution is y = 1/(1 — 4e™").

3. Letting 2 = 2 and solving 1/3 = 1/(4 + ¢) we get ¢ = —1. The solution is y = 1/(z? — 1). This

solution is defined on the interval (1, 0c).

5. Letting z = 0 and solving 1 = 1/c we get ¢ = 1. The solution is y = 1/(2? 4+ 1). This solution is
defined on the interval (—oc, 0o).

In Problems 7-10 we use © = ¢y cost + cpsint and ' = —e¢ysint + cpcost to obtain a system of two
equations in the two unknowns c1 and ca.

7. From the initial conditions we obtain the system

c] = -1
co = 8.
The solution of the initial-value problem is * = —cost + 8sinft.
In Problems 7-10 we use © = ¢y cost + cpsint and ' = —e¢ysint + cpcost to obtain a system of two

equations in the two unknowns c1 and ca.

9. From the initial conditions we obtain

V3 1 1

P

1 V3
—5014-?02:0

Solving, we find ¢, = v/3/4 and ¢ = 1/4. The solution of the initial-value problem is
x = (v/3/4)cost + (1/4)sint.

In Problems 11-14 we use y = c1e” + coe™ T and v = c1e® — cae™ T to obtain a system of two equations
in the two unknowns ¢y and co.

11. From the initial conditions we obtain

cp+cp=1
cp —cop = 2.
Solving, we find ¢ = % and ez = —%. The solution of the initial-value problem is y = %ex — %e‘x.
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In Problems 11-1/ we use y = c1€* + coe™ and y' = c1e* — coe™" to obtain a system of two equations

in the two unknowns ¢; and co.

13.

15.

17.

19.

21.

23.

From the initial conditions we obtain
e_lcl +eco=>5
1 .
€ 0] —ecop = —b.

Solving, we find ¢; = 0 and co = 5e~!. The solution of the initial-value problem is y = 5e~le=* =
Se—1-%,

Two solutions are y = 0 and y = 3.

af 2

For f(z,y) = y%/3 we have 8_y = gy_lf 3. Thus, the differential equation will have a unique solution
in any rectangular region of the plane where y # 0.
Yy af 1 . . . . . L
For f(z,y) = = we have Y Thus, the differential equation will have a unique solution in
T y T

any region where x ## 0.

For f(z,y) = 22/(4 — y?) we have df/dy = 22%y/(4 —y?)?. Thus the differential equation will have

a unique solution in any region where y < —2, -2 <y < 2, or y > 2.

y? af _  2a%y
For f(z,y) = ———= we have — = . Thus, the differential equation will have a unique
f(z,y) 2+ yQ By —g{rg n yQ) eq q

solution in any region not containing (0, 0).

In Problems 25-28 we identify f(z,y) = /y2 —9 and 0f/0y = y/yy2 —9. We see that f and
af /0y are both continuous in the regions of the plane determined by y < —3 and y > 3 with no

restrictions on .

25.

Since 4 > 3, (1,4) is in the region defined by y > 3 and the differential equation has a unique
solution through (1,4).

In Problems 25-28 we identify f(z,y) = /y2—9 and Of/0y = y//y2 —9. We see that f and
df /0y are both continuous in the regions of the plane determined by y < —3 and y > 3 with no

restrictions on .

27.

Since (2, —3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee of a
unique solution through (2, —3).
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29. (a)
(b)

(c)
33. (a)

(b)

(c)

A one-parameter family of solutions is y = cz. Since ¢’ =¢, 2y = ze =y and y(0) =¢c-0 = 0.
Writing the equation in the form ¢’ = y/z, we see that R cannot contain any point on the y-axis.
Thus, any rectangular region disjoint from the y-axis and containing (zg, yp) will determine an
interval around zp and a unique solution through (zg, 7). Since xp = 0 in part (a), we are not
guaranteed a unique solution through (0, 0).

The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not differ-

entiable at = = 0.

d 1 1 1
Since —(— ) = = 42, we see that y = — is a solution of the differential
dr\ z4c (z+c)? r+c
equation.
Solving y(0) = —1/c = 1 we obtain ¢ = —1 and y = 1/(1 — ). Solving y(0) = —1/c = —1
we obtain ¢ = 1 and y = —1/(1 + z). Being sure to include z = 0, we see that the interval
of existence of y = 1/(1 — z) is (—oc, 1), while the interval of existence of y = —1/(1 + ) is
(—1,00).

By inspection we see that y = 0 is a solution on (—oc, oo).

Differentiating 3z% — y? = ¢ we get 6z — 2yy’ =0 or yy = 3z.
Solving 3z2 — 42 = 3 for y we get

y=¢1(z) =4/3(z% - 1), 1<z <o, \ . /,f
y= o) = —/3(22 1), 1< < oo, \1y

-4 -'z,|' 2 4 F
y=¢53(1')= 3(1‘2—1), —xo < r < —1, ff-z

Y= da(z) = —y/3(22 - 1), —o0 <z < —1.

Only y = ¢3(z) satisfies y(—2) = 3.

In Problems 35-38 we consider the points on the graphs with z-coordinates r9 = —1, g = 0, and

zg = 1. The slopes of the tangent lines at these points are compared with the slopes given by y'(zg) in
(a) through (f).
35. The graph satisfies the conditions in (b) and (f).

In Problems 35-38 we consider the points on the graphs with z-coordinates ¥9 = —1, xg = 0, and

..’L‘[)=1.

The slopes of the tangent lines at these points are compared with the slopes given by y'(zq) in

(a) through (f).
37. The graph satisfies the conditions in (c¢) and (d).
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45.

At t =0, dP/dt = 0.15P(0) + 20 = 0.15(100) 4+ 20 = 35. Thus, the population is increasing at a
rate of 3,600 individuals per year.
If the population is 500 at time t = T then
dP
= | =0.15P(T) + 20 = 0.15(500) + 20 = 95.
dt |,_p
Thus, at this time, the population is increasing at a rate of 9,500 individuals per year.
dP dP
.Ezk‘P—l—i‘”, Ezkp—i“
Let b be the rate of births and d the rate of deaths. Then b = k1 P and d = ko P?. Since dP/dt = b—d,

the differential equation is dP/dt = k1P — ko P2.

From the graph in the text we estimate Ty = 180° and T;,, = 75°. We observe that when T = 85,
dT'/dt = —1. From the differential equation we then have

dT/dt ~1
k_T—Tm =5 - b

The number of students with the flu is # and the number not infected is 1000 — z, so dz/dt =
k(1000 — z).

The rate at which salt is leaving the tank is

/A A
Rous (3 gal/min) - (% lb/’gal) — = Ib/min.

Thus dA/dt = —A/100 (where the minus sign is used since the amount of salt is decreasing. The
initial amount is A(0) = 50.
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11. The rate at which salt is entering the tank is
Rjn = (3 gal/min) - (2 Ib/gal) = 6 1b/min.
Since the tank loses liquid at the net rate of
3 gal/min — 3.5 gal/min = —0.5 gal/min,
after ¢ minutes the number of gallons of brine in the tank is 300 — %t gallons. Thus the rate at

which salt is leaving is

A 354 . TA .
Roys = (m lb,"gal) (3.5 gal/min) = = S0 i2 Ib/min = 500 1b/min.

The differential equation is

dA 7A dA 7
Z 60— * Ttew—~A""C

13. The volume of water in the tank at time ¢ is V' = A, h. The differential equation is then
dh 1 dV 1 cﬁlh
—cApy/2gh | = 1,;
dt A, dt -w(c" g)

2 2
Using Ay, =7 (12) = % A, = 10% = 100, and g = 32, this becomes

dh . CﬂfSﬁ M— 1/_

dt 100 450

15. Since i = dg/dt and Ld?q/dt*> + Rdq/dt = E(t), we obtain Ldi/dt + Ri = E(t).

d 1
17. From Newton's second law we obtain md—z = —kv? + mg.

19. The net force acting on the mass is

F=ma= méz —k(s +x)+mg = —kz +mg — ks.
Since the condition of equilibrium is mg = ks, the differential equation is
dx

21. From g = k/R? we find k = gR?. Using a = d’r/dt? and the fact that the positive direction is

upward we get
d?r e ko gR? or d*r n gR? _0
di2 o2 2 dt? 2

23. The differential equation is % =k(M - A).
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25. The differential equation is 2/(t) = r — kz(t) where k > 0.

27. We see from the figure that 260 + a = 7. Thus
2 tan @
—i:n =tana = tan(m — 20) = — tan 20 = —ﬁ.
Since the slope of the tangent line is ¥/ = tan # we have y/z = 2y /[1—(v/)?]
or y —y(y')? = 2y, which is the quadratic equation y(y')? + 2zy’ —y = 0
in /. Using the quadratic formula, we get
. 2w+ f4x? 4 4y2 oz NECE T

y:
2y ]

Lgs

Since dy/dx > 0, the differential equation is

— 2 2
dy_ T4/ ri+y dy f—xz-i—y?—l—xzﬂ.

dr Iy Yz
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