1. From $\frac{1}{8}x'' + 16x = 0$ we obtain

$$x = c_1 \cos 8\sqrt{2} \, t + c_2 \sin 8\sqrt{2} \, t$$

so that the period of motion is $2\pi/8\sqrt{2} = \sqrt{2}\pi/8$ seconds.

- 3. From $\frac{3}{4}x'' + 72x = 0$, x(0) = -1/4, and x'(0) = 0 we obtain $x = -\frac{1}{4}\cos 4\sqrt{6}t$.
- 5. From $\frac{5}{8}x'' + 40x = 0$, x(0) = 1/2, and x'(0) = 0 we obtain $x = \frac{1}{2}\cos 8t$.
 - (a) $x(\pi/12) = -1/4$, $x(\pi/8) = -1/2$, $x(\pi/6) = -1/4$, $x(\pi/4) = 1/2$, $x(9\pi/32) = \sqrt{2}/4$.
 - (b) $x' = -4 \sin 8t$ so that $x'(3\pi/16) = 4$ ft/s directed downward.
 - (c) If $x = \frac{1}{2}\cos 8t = 0$ then $t = (2n+1)\pi/16$ for n = 0, 1, 2, ...
- 7. From 20x'' + 20x = 0, x(0) = 0, and x'(0) = -10 we obtain $x = -10\sin t$ and $x' = -10\cos t$.
 - (a) The 20 kg mass has the larger amplitude.
 - (b) 20 kg: $x'(\pi/4) = -5\sqrt{2}$ m/s, $x'(\pi/2) = 0$ m/s; 50 kg: $x'(\pi/4) = 0$ m/s, $x'(\pi/2) = 10$ m/s
 - (c) If $-5\sin 2t = -10\sin t$ then $\sin t(\cos t 1) = 0$ so that $t = n\pi$ for n = 0, 1, 2, ..., placing both masses at the equilibrium position. The 50 kg mass is moving upward; the 20 kg mass is moving upward when n is even and downward when n is odd.
- **9.** From $\frac{1}{4}x'' + x = 0$, x(0) = 1/2, and x'(0) = 3/2 we obtain

$$x = \frac{1}{2}\cos 2t + \frac{3}{4}\sin 2t = \frac{\sqrt{13}}{4}\sin(2t + 0.588).$$

- 11. From 2x'' + 200x = 0, x(0) = -2/3, and x'(0) = 5 we obtain
 - (a) $x = -\frac{2}{3}\cos 10t + \frac{1}{2}\sin 10t = \frac{5}{6}\sin(10t 0.927).$
 - (b) The amplitude is 5/6 ft and the period is $2\pi/10 = \pi/5$
 - (c) $3\pi = \pi k/5$ and k = 15 cycles.
 - (d) If x=0 and the weight is moving downward for the second time, then $10t-0.927=2\pi$ or t=0.721 s.
 - (e) If $x' = \frac{25}{3}\cos(10t 0.927) = 0$ then $10t 0.927 = \pi/2 + n\pi$ or $t = (2n + 1)\pi/20 + 0.0927$ for $n = 0, 1, 2, \dots$
 - (f) x(3) = -0.597 ft
 - (g) x'(3) = -5.814 ft/s
 - (h) $x''(3) = 59.702 \text{ ft/s}^2$
 - (i) If x = 0 then $t = \frac{1}{10}(0.927 + n\pi)$ for n = 0, 1, 2, ... The velocity at these times is $x' = \pm 8.33$ ft/s.
 - (j) If x = 5/12 then $t = \frac{1}{10}(\pi/6 + 0.927 + 2n\pi)$ and $t = \frac{1}{10}(5\pi/6 + 0.927 + 2n\pi)$ for n = 0, 1, 2, ...
 - (k) If x = 5/12 and x' < 0 then $t = \frac{1}{10}(5\pi/6 + 0.927 + 2n\pi)$ for $n = 0, 1, 2, \ldots$

Assn 16

- 13. From $k_1 = 40$ and $k_2 = 120$ we compute the effective spring constant k = 4(40)(120)/160 = 120. Now, m = 20/32 so k/m = 120(32)/20 = 192 and x'' + 192x = 0. Using x(0) = 0 and x'(0) = 2 we obtain $x(t) = \frac{\sqrt{3}}{12} \sin 8\sqrt{3}t$.
- 15. For large values of t the differential equation is approximated by x'' = 0. The solution of this equation is the linear function $x = c_1t + c_2$. Thus, for large time, the restoring force will have decayed to the point where the spring is incapable of returning the mass, and the spring will simply keep on stretching.
- 17. (a) above

(b) heading upward

19. (a) below

- (b) heading upward
- 21. From $\frac{1}{8}x'' + x' + 2x = 0$, x(0) = -1, and x'(0) = 8 we obtain $x = 4te^{-4t} e^{-4t}$ and $x' = 8e^{-4t} 16te^{-4t}$. If x = 0 then t = 1/4 second. If x' = 0 then t = 1/2 second and the extreme displacement is $x = e^{-2}$ feet.
- **23.** (a) From x'' + 10x' + 16x = 0, x(0) = 1, and x'(0) = 0 we obtain $x = \frac{4}{3}e^{-2t} \frac{1}{3}e^{-8t}$.
 - (b) From x'' + x' + 16x = 0, x(0) = 1, and x'(0) = -12 then $x = -\frac{2}{3}e^{-2t} + \frac{5}{3}e^{-8t}$.
- **25.** (a) From 0.1x'' + 0.4x' + 2x = 0, x(0) = -1, and x'(0) = 0 we obtain $x = e^{-2t} \left[-\cos 4t \frac{1}{2}\sin 4t \right]$.
 - (b) $x = \frac{\sqrt{5}}{2}e^{-2t}\sin(4t + 4.25)$
 - (c) If x = 0 then $4t + 4.25 = 2\pi$, 3π , 4π , ... so that the first time heading upward is t = 1.294 seconds.
- 27. From $\frac{5}{16}x'' + \beta x' + 5x = 0$ we find that the roots of the auxiliary equation are $m = -\frac{8}{5}\beta \pm \frac{4}{5}\sqrt{4\beta^2 25}$.
 - (a) If $4\beta^2 25 > 0$ then $\beta > 5/2$.
 - (b) If $4\beta^2 25 = 0$ then $\beta = 5/2$.
 - (c) If $4\beta^2 25 < 0$ then $0 < \beta < 5/2$.
- **29.** If $\frac{1}{2}x'' + \frac{1}{2}x' + 6x = 10\cos 3t$, x(0) = 2, and x'(0) = 0 then

$$x_c = e^{-t/2} \left(c_1 \cos \frac{\sqrt{47}}{2} t + c_2 \sin \frac{\sqrt{47}}{2} t \right)$$

and $x_p = \frac{10}{3}(\cos 3t + \sin 3t)$ so that the equation of motion is

$$x = e^{-t/2} \left(-\frac{4}{3} \cos \frac{\sqrt{47}}{2} t - \frac{64}{3\sqrt{47}} \sin \frac{\sqrt{47}}{2} t \right) + \frac{10}{3} (\cos 3t + \sin 3t).$$

31. From $x'' + 8x' + 16x = 8\sin 4t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = c_1e^{-4t} + c_2te^{-4t}$ and $x_p = -\frac{1}{4}\cos 4t$ so that the equation of motion is

$$x = \frac{1}{4}e^{-4t} + te^{-4t} - \frac{1}{4}\cos 4t.$$

33. From $2x'' + 32x = 68e^{-2t}\cos 4t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = c_1\cos 4t + c_2\sin 4t$ and $x_p = \frac{1}{2}e^{-2t}\cos 4t - 2e^{-2t}\sin 4t$ so that

$$x = -\frac{1}{2}\cos 4t + \frac{9}{4}\sin 4t + \frac{1}{2}e^{-2t}\cos 4t - 2e^{-2t}\sin 4t.$$

- **35.** (a) By Hooke's law the external force is F(t) = kh(t) so that $mx'' + \beta x' + kx = kh(t)$.
 - (b) From $\frac{1}{2}x'' + 2x' + 4x = 20\cos t$, x(0) = 0, and x'(0) = 0 we obtain $x_c = e^{-2t}(c_1\cos 2t + c_2\sin 2t)$ and $x_p = \frac{56}{13}\cos t + \frac{32}{13}\sin t$ so that

$$x = e^{-2t} \left(-\frac{56}{13} \cos 2t - \frac{72}{13} \sin 2t \right) + \frac{56}{13} \cos t + \frac{32}{13} \sin t.$$

37. From $x'' + 4x = -5\sin 2t + 3\cos 2t$, x(0) = -1, and x'(0) = 1 we obtain $x_c = c_1\cos 2t + c_2\sin 2t$, $x_p = \frac{3}{4}t\sin 2t + \frac{5}{4}t\cos 2t$, and

$$x = -\cos 2t - \frac{1}{8}\sin 2t + \frac{3}{4}t\sin 2t + \frac{5}{4}t\cos 2t.$$