Assn 12

- 1. From $4m^2 + m = 0$ we obtain m = 0 and m = -1/4 so that $y = c_1 + c_2 e^{-x/4}$.
- 3. From $m^2 m 6 = 0$ we obtain m = 3 and m = -2 so that $y = c_1 e^{3x} + c_2 e^{-2x}$.
- 5. From $m^2 + 8m + 16 = 0$ we obtain m = -4 and m = -4 so that $y = c_1 e^{-4x} + c_2 x e^{-4x}$.
- 7. From $12m^2 5m 2 = 0$ we obtain m = -1/4 and m = 2/3 so that $y = c_1e^{-x/4} + c_2e^{2x/3}$.
- 9. From $m^2 + 9 = 0$ we obtain m = 3i and m = -3i so that $y = c_1 \cos 3x + c_2 \sin 3x$.
- 11. From $m^2 4m + 5 = 0$ we obtain $m = 2 \pm i$ so that $y = e^{2x}(c_1 \cos x + c_2 \sin x)$.
- 13. From $3m^2 + 2m + 1 = 0$ we obtain $m = -1/3 \pm \sqrt{2}i/3$ so that $y = e^{-x/3}[c_1\cos(\sqrt{2}x/3) + c_2\sin(\sqrt{2}x/3)].$
- 15. From $m^3 4m^2 5m = 0$ we obtain m = 0, m = 5, and m = -1 so that $y = c_1 + c_2 e^{5x} + c_3 e^{-x}$.
- 17. From $m^3 5m^2 + 3m + 9 = 0$ we obtain m = -1, m = 3, and m = 3 so that $y = c_1 e^{-x} + c_2 e^{3x} + c_3 x e^{3x}$.
- 19. From $m^3 + m^2 2 = 0$ we obtain m = 1 and $m = -1 \pm i$ so that $u = c_1 e^t + e^{-t} (c_2 \cos t + c_3 \sin t)$.
- 21. From $m^3 + 3m^2 + 3m + 1 = 0$ we obtain m = -1, m = -1, and m = -1 so that $y = c_1 e^{-x} + c_2 x e^{-x} + c_3 x^2 e^{-x}$.
- 23. From $m^4 + m^3 + m^2 = 0$ we obtain m = 0, m = 0, and $m = -1/2 \pm \sqrt{3}i/2$ so that $y = c_1 + c_2 x + e^{-x/2} [c_3 \cos(\sqrt{3}x/2) + c_4 \sin(\sqrt{3}x/2)].$
- 25. From $16m^4 + 24m^2 + 9 = 0$ we obtain $m = \pm \sqrt{3}i/2$ and $m = \pm \sqrt{3}i/2$ so that $y = c_1 \cos(\sqrt{3}x/2) + c_2 \sin(\sqrt{3}x/2) + c_3 x \cos(\sqrt{3}x/2) + c_4 x \sin(\sqrt{3}x/2)$.
- **27.** From $m^5 + 5m^4 2m^3 10m^2 + m + 5 = 0$ we obtain m = -1, m = -1, m = 1, and m = 1, and m = -5 so that

$$u = c_1 e^{-r} + c_2 r e^{-r} + c_3 e^r + c_4 r e^r + c_5 e^{-5r}.$$

29. From $m^2 + 16 = 0$ we obtain $m = \pm 4i$ so that $y = c_1 \cos 4x + c_2 \sin 4x$. If y(0) = 2 and y'(0) = -2 then $c_1 = 2$, $c_2 = -1/2$, and $y = 2 \cos 4x - \frac{1}{2} \sin 4x$.

- 31. From $m^2 4m 5 = 0$ we obtain m = -1 and m = 5, so that $y = c_1 e^{-t} + c_2 e^{5t}$. If y(1) = 0 and y'(1) = 2, then $c_1 e^{-1} + c_2 e^{5} = 0$, $-c_1 e^{-1} + 5c_2 e^{5} = 2$, so $c_1 = -e/3$, $c_2 = e^{-5}/3$, and $y = -\frac{1}{3}e^{1-t} + \frac{1}{3}e^{5t-5}$.
- **33.** From $m^2+m+2=0$ we obtain $m=-1/2\pm\sqrt{7}i/2$ so that $y=e^{-x/2}[c_1\cos(\sqrt{7}x/2)+c_2\sin(\sqrt{7}x/2)]$. If y(0)=0 and y'(0)=0 then $c_1=0$ and $c_2=0$ so that y=0.
- 35. From $m^3 + 12m^2 + 36m = 0$ we obtain m = 0, m = -6, and m = -6 so that $y = c_1 + c_2 e^{-6x} + c_3 x e^{-6x}$. If y(0) = 0, y'(0) = 1, and y''(0) = -7 then

$$c_1+c_2=0, \quad -6c_2+c_3=1, \quad 36c_2-12c_3=-7,$$
 so $c_1=5/36, \ c_2=-5/36, \ c_3=1/6, \ {\rm and} \ y=\frac{5}{36}-\frac{5}{36}e^{-6x}+\frac{1}{6}xe^{-6x}.$

- 37. From $m^2 10m + 25 = 0$ we obtain m = 5 and m = 5 so that $y = c_1 e^{5x} + c_2 x e^{5x}$. If y(0) = 1 and y(1) = 0 then $c_1 = 1$, $c_1 e^5 + c_2 e^5 = 0$, so $c_1 = 1$, $c_2 = -1$, and $y = e^{5x} x e^{5x}$.
- **39.** From $m^2 + 1 = 0$ we obtain $m = \pm i$ so that $y = c_1 \cos x + c_2 \sin x$ and $y' = -c_1 \sin x + c_2 \cos x$. From $y'(0) = c_1(0) + c_2(1) = c_2 = 0$ and $y'(\pi/2) = -c_1(1) = 0$ we find $c_1 = c_2 = 0$. A solution of the boundary-value problem is y = 0.
- 41. The auxiliary equation is $m^2-3=0$ which has roots $-\sqrt{3}$ and $\sqrt{3}$. By (10) the general solution is $y=c_1e^{\sqrt{3}x}+c_2e^{-\sqrt{3}x}$. By (11) the general solution is $y=c_1\cosh\sqrt{3}x+c_2\sinh\sqrt{3}x$. For $y=c_1e^{\sqrt{3}x}+c_2e^{-\sqrt{3}x}$ the initial conditions imply $c_1+c_2=1$, $\sqrt{3}c_1-\sqrt{3}c_2=5$. Solving for c_1 and c_2 we find $c_1=\frac{1}{2}(1+5\sqrt{3})$ and $c_2=\frac{1}{2}(1-5\sqrt{3})$ so $y=\frac{1}{2}(1+5\sqrt{3})e^{\sqrt{3}x}+\frac{1}{2}(1-5\sqrt{3})e^{-\sqrt{3}x}$. For $y=c_1\cosh\sqrt{3}x+c_2\sinh\sqrt{3}x$ the initial conditions imply $c_1=1$, $\sqrt{3}c_2=5$. Solving for c_1 and c_2 we find $c_1=1$ and $c_2=\frac{5}{3}\sqrt{3}$ so $y=\cosh\sqrt{3}x+\frac{5}{3}\sqrt{3}\sinh\sqrt{3}x$.
- **43.** The auxiliary equation should have two positive roots, so that the solution has the form $y = c_1 e^{k_1 x} + c_2 e^{k_2 x}$. Thus, the differential equation is (f).
- **45.** The auxiliary equation should have a pair of complex roots $\alpha \pm \beta i$ where $\alpha < 0$, so that the solution has the form $e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$. Thus, the differential equation is (e).
- 47. The differential equation should have the form $y'' + k^2y = 0$ where k = 1 so that the period of the solution is 2π . Thus, the differential equation is (d).
- **49.** Since $(m-4)(m+5)^2 = m^3 + 6m^2 15m 100$ the differential equation is y''' + 6y'' 15y' 100y = 0. The differential equation is not unique since any constant multiple of the left-hand side of the differential equation would lead to the auxiliary roots.

Assn 12

51. From the solution $y_1 = e^{-4x} \cos x$ we conclude that $m_1 = -4 + i$ and $m_2 = -4 - i$ are roots of the auxiliary equation. Hence another solution must be $y_2 = e^{-4x} \sin x$. Now dividing the polynomial $m^3 + 6m^2 + m - 34$ by $[m - (-4 + i)][m - (-4 - i)] = m^2 + 8m + 17$ gives m - 2. Therefore $m_3 = 2$ is the third root of the auxiliary equation, and the general solution of the differential equation is

$$y = c_1 e^{-4x} \cos x + c_2 e^{-4x} \sin x + c_3 e^{2x}.$$