Assn 10

- 1. From $y = c_1 e^x + c_2 e^{-x}$ we find $y' = c_1 e^x c_2 e^{-x}$. Then $y(0) = c_1 + c_2 = 0$, $y'(0) = c_1 c_2 = 1$ so that $c_1 = \frac{1}{2}$ and $c_2 = -\frac{1}{2}$. The solution is $y = \frac{1}{2}e^x \frac{1}{2}e^{-x}$.
- 3. From $y = c_1 x + c_2 x \ln x$ we find $y' = c_1 + c_2 (1 + \ln x)$. Then $y(1) = c_1 = 3$, $y'(1) = c_1 + c_2 = -1$ so that $c_1 = 3$ and $c_2 = -4$. The solution is $y = 3x 4x \ln x$.
- 5. From $y = c_1 + c_2 x^2$ we find $y' = 2c_2 x$. Then $y(0) = c_1 = 0$, $y'(0) = 2c_2 \cdot 0 = 0$ and hence y'(0) = 1 is not possible. Since $a_2(x) = x$ is 0 at x = 0, Theorem 4.1 is not violated.
- 7. From $x(0) = x_0 = c_1$ we see that $x(t) = x_0 \cos \omega t + c_2 \sin \omega t$ and $x'(t) = -x_0 \sin \omega t + c_2 \omega \cos \omega t$. Then $x'(0) = x_1 = c_2 \omega$ implies $c_2 = x_1/\omega$. Thus

$$x(t) = x_0 \cos \omega t + \frac{x_1}{\omega} \sin \omega t.$$

- 9. Since $a_2(x) = x 2$ and $x_0 = 0$ the problem has a unique solution for $-\infty < x < 2$.
- 11. (a) We have $y(0) = c_1 + c_2 = 0$, $y(1) = c_1 e + c_2 e^{-1} = 1$ so that $c_1 = e/(e^2 1)$ and $c_2 = -e/(e^2 1)$. The solution is $y = e(e^x e^{-x})/(e^2 1)$.
 - (b) We have $y(0) = c_3 \cosh 0 + c_4 \sinh 0 = c_3 = 0$ and $y(1) = c_3 \cosh 1 + c_4 \sinh 1 = c_4 \sinh 1 = 1$, so $c_3 = 0$ and $c_4 = 1/\sinh 1$. The solution is $y = (\sinh x)/(\sinh 1)$.
 - (c) Starting with the solution in part (b) we have

$$y = \frac{1}{\sinh 1} \sinh x = \frac{2}{e^1 - e^{-1}} \frac{e^x - e^{-x}}{2} = \frac{e^x - e^{-x}}{e - 1/e} = \frac{e}{e^2 - 1} (e^x - e^{-x}).$$

- 13. From $y = c_1 e^x \cos x + c_2 e^x \sin x$ we find $y' = c_1 e^x (-\sin x + \cos x) + c_2 e^x (\cos x + \sin x)$.
 - (a) We have $y(0) = c_1 = 1$, $y'(\pi) = -e^{\pi}(c_1 + c_2) = 0$ so that $c_1 = 1$ and $c_2 = -1$. The solution is $y = e^x \cos x e^x \sin x$.
 - (b) We have $y(0) = c_1 = 1$, $y(\pi) = -e^{\pi} = -1$, which is not possible.
 - (c) We have $y(0) = c_1 = 1$, $y(\pi/2) = c_2 e^{\pi/2} = 1$ so that $c_1 = 1$ and $c_2 = e^{-\pi/2}$. The solution is $y = e^x \cos x + e^{-\pi/2} e^x \sin x$.
 - (d) We have $y(0) = c_1 = 0$, $y(\pi) = c_2 e^{\pi} \sin \pi = 0$ so that $c_1 = 0$ and c_2 is arbitrary. Solutions are $y = c_2 e^x \sin x$, for any real numbers c_2 .
- 15. Since $(-4)x + (3)x^2 + (1)(4x 3x^2) = 0$ the set of functions is linearly dependent.
- 17. Since $(-1/5)5 + (1)\cos^2 x + (1)\sin^2 x = 0$ the set of functions is linearly dependent.

- 19. Since (-4)x + (3)(x-1) + (1)(x+3) = 0 the set of functions is linearly dependent.
- 21. Suppose $c_1(1+x) + c_2x + c_3x^2 = 0$. Then $c_1 + (c_1+c_2)x + c_3x^2 = 0$ and so $c_1 = 0$, $c_1 + c_2 = 0$, and $c_3 = 0$. Since $c_1 = 0$ we also have $c_2 = 0$. Thus, the set of functions is linearly independent.
- 23. The functions satisfy the differential equation and are linearly independent since

$$W\left(e^{-3x}, e^{4x}\right) = 7e^x \neq 0$$

for $-\infty < x < \infty$. The general solution is

$$y = c_1 e^{-3x} + c_2 e^{4x}.$$

25. The functions satisfy the differential equation and are linearly independent since

$$W\left(e^x\cos 2x, e^x\sin 2x\right) = 2e^{2x} \neq 0$$

for $-\infty < x < \infty$. The general solution is $y = c_1 e^x \cos 2x + c_2 e^x \sin 2x$.

27. The functions satisfy the differential equation and are linearly independent since

$$W\left(x^3, x^4\right) = x^6 \neq 0$$

for $0 < x < \infty$. The general solution on this interval is

$$y = c_1 x^3 + c_2 x^4.$$

29. The functions satisfy the differential equation and are linearly independent since

$$W(x, x^{-2}, x^{-2} \ln x) = 9x^{-6} \neq 0$$

for $0 < x < \infty$. The general solution on this interval is

$$y = c_1 x + c_2 x^{-2} + c_3 x^{-2} \ln x.$$

- 31. The functions $y_1 = e^{2x}$ and $y_2 = e^{5x}$ form a fundamental set of solutions of the associated homogeneous equation, and $y_p = 6e^x$ is a particular solution of the nonhomogeneous equation.
- 33. The functions $y_1 = e^{2x}$ and $y_2 = xe^{2x}$ form a fundamental set of solutions of the associated homogeneous equation, and $y_p = x^2e^{2x} + x 2$ is a particular solution of the nonhomogeneous equation.

35. (a) We have
$$y'_{p_1}=6e^{2x}$$
 and $y''_{p_1}=12e^{2x}$, so
$$y''_{p_1}-6y'_{p_1}+5y_{p_1}=12e^{2x}-36e^{2x}+15e^{2x}=-9e^{2x}.$$
 Also, $y'_{p_2}=2x+3$ and $y''_{p_2}=2$, so
$$y''_{p_2}-6y'_{p_2}+5y_{p_2}=2-6(2x+3)+5(x^2+3x)=5x^2+3x-16.$$

(b) By the superposition principle for nonhomogeneous equations a particular solution of $y'' - 6y' + 5y = 5x^2 + 3x - 16 - 9e^{2x}$ is $y_p = x^2 + 3x + 3e^{2x}$. A particular solution of the second equation is

$$y_p = -2y_{p_2} - \frac{1}{9}y_{p_1} = -2x^2 - 6x - \frac{1}{3}e^{2x}.$$