Assn 1

- 1. Second order; linear
- 3. Fourth order; linear
- 5. Second order; nonlinear because of $(dy/dx)^2$ or $\sqrt{1+(dy/dx)^2}$
- 7. Third order; linear
- 9. Writing the differential equation in the form $x(dy/dx) + y^2 = 1$, we see that it is nonlinear in y because of y^2 . However, writing it in the form $(y^2 1)(dx/dy) + x = 0$, we see that it is linear in x.
- 11. From $y = e^{-x/2}$ we obtain $y' = -\frac{1}{2}e^{-x/2}$. Then $2y' + y = -e^{-x/2} + e^{-x/2} = 0$.
- 13. From $y = e^{3x} \cos 2x$ we obtain $y' = 3e^{3x} \cos 2x 2e^{3x} \sin 2x$ and $y'' = 5e^{3x} \cos 2x 12e^{3x} \sin 2x$, so that y'' 6y' + 13y = 0.
- 15. The domain of the function, found by solving $x+2 \ge 0$, is $[-2, \infty)$. From $y'=1+2(x+2)^{-1/2}$ we have

$$(y-x)y' = (y-x)[1 + (2(x+2)^{-1/2}]$$

$$= y-x+2(y-x)(x+2)^{-1/2}$$

$$= y-x+2[x+4(x+2)^{1/2}-x](x+2)^{-1/2}$$

$$= y-x+8(x+2)^{1/2}(x+2)^{-1/2} = y-x+8.$$

An interval of definition for the solution of the differential equation is $(-2, \infty)$ because y' is not defined at x = -2.

17. The domain of the function is $\{x \mid 4-x^2 \neq 0\}$ or $\{x \mid x \neq -2 \text{ or } x \neq 2\}$. From $y' = 2x/(4-x^2)^2$ we have

$$y' = 2x \left(\frac{1}{4 - x^2}\right)^2 = 2xy.$$

An interval of definition for the solution of the differential equation is (-2,2). Other intervals are $(-\infty, -2)$ and $(2, \infty)$.

19. Writing $\ln(2X-1) - \ln(X-1) = t$ and differentiating implicitly we obtain

$$\frac{2}{2X-1} \frac{dX}{dt} - \frac{1}{X-1} \frac{dX}{dt} = 1$$

$$\left(\frac{2}{2X-1} - \frac{1}{X-1}\right) \frac{dX}{dt} = 1$$

$$\frac{2X-2-2X+1}{(2X-1)(X-1)} \frac{dX}{dt} = 1$$

$$\frac{dX}{dt} = -(2X-1)(X-1) = (X-1)(1-2X).$$

Exponentiating both sides of the implicit solution we obtain

Solving $e^t - 2 = 0$ we get $t = \ln 2$. Thus, the solution is defined on $(-\infty, \ln 2)$ or on $(\ln 2, \infty)$. The graph of the solution defined on $(-\infty, \ln 2)$ is dashed, and the graph of the solution defined on $(\ln 2, \infty)$ is solid.

21. Differentiating $P = c_1 e^t / (1 + c_1 e^t)$ we obtain

$$\frac{dP}{dt} = \frac{\left(1 + c_1 e^t\right) c_1 e^t - c_1 e^t \cdot c_1 e^t}{\left(1 + c_1 e^t\right)^2} = \frac{c_1 e^t}{1 + c_1 e^t} \frac{\left[\left(1 + c_1 e^t\right) - c_1 e^t\right]}{1 + c_1 e^t}$$
$$= \frac{c_1 e^t}{1 + c_1 e^t} \left[1 - \frac{c_1 e^t}{1 + c_1 e^t}\right] = P(1 - P).$$

23. From $y = c_1 e^{2x} + c_2 x e^{2x}$ we obtain $\frac{dy}{dx} = (2c_1 + c_2)e^{2x} + 2c_2 x e^{2x}$ and $\frac{d^2y}{dx^2} = (4c_1 + 4c_2)e^{2x} + 4c_2 x e^{2x}$, so that

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = (4c_1 + 4c_2 - 8c_1 - 4c_2 + 4c_1)e^{2x} + (4c_2 - 8c_2 + 4c_2)xe^{2x} = 0.$$

25. From $y = \begin{cases} -x^2, & x < 0 \\ x^2, & x > 0 \end{cases}$ we obtain $y' = \begin{cases} -2x, & x < 0 \\ 2x, & x \ge 0 \end{cases}$ so that xy' - 2y = 0.

27. From $y = e^{mx}$ we obtain $y' = me^{mx}$. Then y' + 2y = 0 implies

$$me^{mx} + 2e^{mx} = (m+2)e^{mx} = 0.$$

Since $e^{mx} > 0$ for all x, m = -2. Thus $y = e^{-2x}$ is a solution.

29. From $y = e^{mx}$ we obtain $y' = me^{mx}$ and $y'' = m^2 e^{mx}$. Then y'' - 5y' + 6y = 0 implies

$$m^2e^{mx} - 5me^{mx} + 6e^{mx} = (m-2)(m-3)e^{mx} = 0.$$

Since $e^{mx} > 0$ for all x, m = 2 and m = 3. Thus $y = e^{2x}$ and $y = e^{3x}$ are solutions.

31. From $y = x^m$ we obtain $y' = mx^{m-1}$ and $y'' = m(m-1)x^{m-2}$. Then xy'' + 2y' = 0 implies

$$xm(m-1)x^{m-2} + 2mx^{m-1} = [m(m-1) + 2m]x^{m-1} = (m^2 + m)x^{m-1}$$

$$= m(m+1)x^{m-1} = 0.$$

Since $x^{m-1} > 0$ for x > 0, m = 0 and m = -1. Thus y = 1 and $y = x^{-1}$ are solutions.

In Problems 33-36 we substitute y = c into the differential equations and use y' = 0 and y'' = 0

33. Solving 5c = 10 we see that y = 2 is a constant solution.

In Problems 33-36 we substitute y = c into the differential equations and use y' = 0 and y'' = 0

- **35.** Since 1/(c-1)=0 has no solutions, the differential equation has no constant solutions.
- **37.** From $x = e^{-2t} + 3e^{6t}$ and $y = -e^{-2t} + 5e^{6t}$ we obtain

$$\frac{dx}{dt} = -2e^{-2t} + 18e^{6t}$$
 and $\frac{dy}{dt} = 2e^{-2t} + 30e^{6t}$.

Then

$$x + 3y = (e^{-2t} + 3e^{6t}) + 3(-e^{-2t} + 5e^{6t}) = -2e^{-2t} + 18e^{6t} = \frac{dx}{dt}$$

and

$$5x + 3y = 5(e^{-2t} + 3e^{6t}) + 3(-e^{-2t} + 5e^{6t}) = 2e^{-2t} + 30e^{6t} = \frac{dy}{dt}.$$

47. Differentiating $(x^3 + y^3)/xy = 3c$ we obtain

$$\frac{xy(3x^2 + 3y^2y') - (x^3 + y^3)(xy' + y)}{x^2y^2} = 0$$

$$3x^3y + 3xy^3y' - x^4y' - x^3y - xy^3y' - y^4 = 0$$

$$(3xy^3 - x^4 - xy^3)y' = -3x^3y + x^3y + y^4$$

$$y' = \frac{y^4 - 2x^3y}{2xy^3 - x^4} = \frac{y(y^3 - 2x^3)}{x(2y^3 - x^3)}.$$

- **49.** The derivatives of the functions are $\phi_1'(x) = -x/\sqrt{25-x^2}$ and $\phi_2'(x) = x/\sqrt{25-x^2}$, neither of which is defined at $x = \pm 5$.
- 51. For the first-order differential equation integrate f(x). For the second-order differential equation integrate twice. In the latter case we get $y = \int (\int f(x)dx)dx + c_1x + c_2$.
- 53. The differential equation yy' xy = 0 has normal form dy/dx = x. These are not equivalent because y = 0 is a solution of the first differential equation but not a solution of the second.
- 55. (a) Since e^{-x^2} is positive for all values of x, dy/dx > 0 for all x, and a solution, y(x), of the differential equation must be increasing on any interval.
 - (b) $\lim_{x\to-\infty}\frac{dy}{dx}=\lim_{x\to-\infty}e^{-x^2}=0$ and $\lim_{x\to\infty}\frac{dy}{dx}=\lim_{x\to\infty}e^{-x^2}=0$. Since dy/dx approaches 0 as x approaches $-\infty$ and ∞ , the solution curve has horizontal asymptotes to the left and to the right.
 - (c) To test concavity we consider the second derivative

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(e^{-x^2}\right) = -2xe^{-x^2}.$$

Since the second derivative is positive for x < 0 and negative for x > 0, the solution curve is concave up on $(-\infty, 0)$ and concave down on $(0, \infty)$.

- 57. (a) The derivative of a constant solution is 0, so solving y(a by) = 0 we see that y = 0 and y = a/b are constant solutions.
 - (b) A solution is increasing where dy/dx = y(a by) = by(a/b y) > 0 or 0 < y < a/b. A solution is decreasing where dy/dx = by(a/b y) < 0 or y < 0 or y > a/b.
 - (c) Using implicit differentiation we compute

$$\frac{d^2y}{dx^2} = y(-by') + y'(a - by) = y'(a - 2by).$$

Solving $d^2y/dx^2 = 0$ we obtain y = a/2b. Since $d^2y/dx^2 > 0$ for 0 < y < a/2b and $d^2y/dx^2 < 0$ for a/2b < y < a/b, the graph of $y = \phi(x)$ has a point of inflection at y = a/2b.

