Assn 1

11.

13.

15.

17.

. Second order; linear

Fourth order; linear

Second order; nonlinear because of (dy/dz)? or /1 + (dy/dz)?

Third order; linear

Writing the differential equation in the form x(dy/dz) 4+ y* = 1, we see that it is nonlinear in y

because of y?. However, writing it in the form (y? — 1)(dz/dy) + = = 0, we see that it is linear in z.
From y = e*/2 we obtain ¢/ = —%E_If@. Then 2y +y = —e %/2 4 e~ %/2 = 0.

From y = 3% cos 2r we obtain 1/ = 3e3% cos 2z — 2e3 sin 2z and 3’ = 5e3% cos 2r — 123 sin 2z, so
that ¢’ — 6y + 13y = 0.

The domain of the function, found by solving r +2 > 0, is [-2,0¢). From ¢y =1+ 2(z + 2)~1/2 we
have
(v =2y = (y — )1 + 2z +2)7
—y—z+2y—a)(x+2)"

1/2 —1/2

=y—r+2z+4zr+2)7/° —z)(r+2)
=y—:r+8($—|—2)1f2(:c+2)_1f2 =y —x+8.

An interval of definition for the solution of the differential equation is (—2,0¢) because ¢ is not

defined at r = —2.

The domain of the function is {z | 4 — 22 # 0} or {x | 2 # —2 or = # 2}. From 3y = 2z /(4 — 2%)?
we have

' 1\
y =2m(4_$2) = 2ry.
An interval of definition for the solution of the differential equation is (—2,2). Other intervals are
(—oo, —2) and (2, 00).
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Assn 1

19. Writing In(2X — 1) —In(X — 1) =t and differentiating implicitly we obtain
2 dX 1 dX

(s ) & -
2X —1 X -1/ dt

2X —2 - 2X 4 1dX
2X —1)(X —1) dt

% =—2X -1}(X-1)=(X—-1)(1 -2X).
Exponentiating both sides of the implicit solution we obtain X
J |
2X -1 o
X-1 2
2X —1=Xel — ¢t - T =~ U

(€ —1)= (e —2)X ‘

e —1 I
et —2°

X —

Solving e’ — 2 = 0 we get t = In2. Thus, the solution is defined on (—oc,In2) or on (In2,00).
The graph of the solution defined on (—nc,1n 2) is dashed, and the graph of the solution defined on

(In2, 0c) is solid.

21. Differentiating P = c€'/ (1 + e e“') we obtain

dP _ (1 —|—cle“') c1et — 1€t - cret cret [(1 + cle.f') — cle“‘]

dt (1+cret)? T 1+ et 1+ cref
t t
cl1e cle
- 1- ¢ |- pa-p).
14 cyet [ 1+ cle*] ( )

d d?
23. From y = c1e%® +coze?® we obtain & _ (201+cg)ezx+2@mezm and 29 — (4eq +402)e2r—|—4cz:ne2r,

dx dx?
so that
d? d
—g 4% + 4y = (4e1 + 4ep — 8c1 — dea + 4c1)e®® + (4ep — 8cn + 4ez)ze?® = 0.
dz dz
2
—°, 0 —2x, <0
25. From y= E, TS we obtain ¥ = so that zy" — 2y = 0.
2 x>0 2, x>0
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27. From y = €™ we obtain ' = me™*. Then v/ + 2y = 0 implies
me™* + 2e" = (m + 2)e™* = 0.

Since €™ > 0 for all z, m = —2. Thus y = ¢ is a solution.

29. From y = €™ we obtain ¥ = me™® and y” = m?e™*. Then 3’ — 5y + 6y = 0 implies
m2e™ — 5me™® + 6™ = (m — 2)(m — 3)e™® = 0.
Since e™* > 0 for all z, m = 2 and m = 3. Thus y = ¢** and y = €3* are solutions.

31. From y = 2™ we obtain y = mz™ ! and v’ = m(m — 1)2™ 2. Then zy” + 2y = 0 implies

1 1

em(m — 1)2™ 2 4 2ma™ ! = [m(m — 1) + 2m]z™ ! = (m? + m)2™"
=m(m +1)z™ 1 = 0.
Since 2™ ! > 0for x >0, m=0and m= —1. Thus y = 1 and y = z~! are solutions.
In Problems 33-36 we substitute y = ¢ into the differential equations and use y' = 0 and y" =0

33. Solving He = 10 we see that y = 2 is a constant solution.

In Problems 33-36 we substitute y = ¢ into the differential equations and use y' = 0 and y" =0

35. Since 1/(c — 1) = 0 has no solutions, the differential equation has no constant solutions.

37. From = = e 2 4+ 3¢5 and y = —e=2* + 55 we obtain

dr dy

= =207 4186 and — =2¢"% 4+ 30",
Then
d
x4 3y = (e72 4 3e%) + 3(—e™2 4 5%) = —2e72F 1 18% = d_M:
and d
50+ 3y = 5(e ™2 +3¢%) + 3(—e X + 5e0) = 272 4 3064 = 2.

47. Differentiating (23 + y3)/zy = 3¢ we obtain

zy(32% + 3y%y) — (27 + 1) (2 +y)

=0

323y 4 3zy3y — 2ty — 2y — 2Py — ¢t =0

(3z1° — 2t — zy®)y = —32%y + 2%y + 4

J = yt —22%y  y(y® - 227)
2ry® — ot x(2y° -2t
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49. The derivatives of the functions are ¢j(z) = —z/v/25 — 22 and ¢4(z) = =/+/25 — 22, neither of
which is defined at = = +5.

51. For the first-order differential equation integrate f(z). For the second-order differential equation

integrate twice. In the latter case we get y = [([ f(z)dz)dx + c1x + e9.

53. The differential equation yy’— 2y = 0 has normal form dy/dx = z. These are not equivalent because

y = 0 is a solution of the first differential equation but not a solution of the second.

55. (a)

(b)

(c)

(d)

Since e is positive for all values of =, dy/dr > 0 for all =, and a solution, y(z), of the
differential equation must be increasing on any interval.
2
T

d d
lim =2 = lim e_rz —0and lim =2 = xllngoe_ = 0. Since dy/dzx approaches 0 as x

T——00 (4T T—r— 00 E—20
approaches —oo and oo, the solution eurve has horizontal asymptotes to the left and to the
right.

To test concavity we consider the second derivative

?y d [(dy d [ _,2 2
@—a(a =& () = 2o

Since the second derivative is positive for © < 0 and negative for = > 0, the solution curve is
concave up on (—oc, 0} and concave down on (0,00). x

¥
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57. (a) The derivative of a constant solution is 0, so solving y(a — by) = 0 we see that y = 0 and

y = a/b are constant solutions.

(b) A solution is increasing where dy/dz = y(a —by) = by(a/b—1y) > 0 or 0 <y < a/b. A solution
is decreasing where dy/dz = by(a/b—y) <0ory < 0or y > a/b.

(c) Using implicit differentiation we compute

f% = y(~by) +/(a —by) =3/ (a — 2by).

Solving d?y/dz* = 0 we obtain y = a/2b. Since d?y/dz? > 0 for 0 < y < a/2b and d?y/dx* < 0
for a/2b < y < a/b, the graph of y = ¢(z) has a point of inflection at y = a/2b.

(d)
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