
Some Theorems
Thm. Divergence Theorem

Let E be a solid region and let S be the boundary surface 
of E.  Let F be a vector field whose component 
functions have continuous partial derivatives on an 
open region containing E.  Then

div
S E

F dS FdV  
  



Ex. Evaluate                 where F = xi + 2yj + zk

and S is the surface of the solid bounded by 2x + 2y + z = 6 
and the coordinate planes.

S

F dS
 



Ex. Find the flux of the vector field F = zi + yj + xk over 
the unit sphere.



Ex. Evaluate                 where F = xyi + (y2 + exz)j + ln(xy)k

and S is the surface of the region bounded by z = 1 – x2,    
z = 0, y = 0, and y + z = 2

S

F dS
 



Thm. Stokes’ Theorem

Let S be an oriented piecewise-smooth surface that is 
bounded by a simple, closed, piecewise-smooth curve 
C.  Let F be a vector field whose components have 
continuous partial derivatives on an open region in 3

that contains S.  Then

curl
C S

F dr F dS   
   



Ex. Evaluate              where F = -y2i + xj + z2k and C is the 

curve of intersection of the plane y + z = 2 and the 
cylinder x2 + y2 = 1.

C

F dr
 



Ex. Evaluate              where F = -y2i + zj + xk and C is the 

boundary of the portion of 2x + 2y + z = 6 that lies in the 
first octant.

C

F dr
 



Ex. Evaluate                       where F = xzi + yzj + xyk and S

is the part of the sphere x2 + y2 + z2 = 4 that lies inside 
the cylinder x2 + y2 = 1 and above the xy-plane.

curl
S

F dS
 
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If F(x,y) is conservative:

•

• We can change the path

• if the path is closed

If C is closed:

• (Green’s Theorem)

0
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 
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Line Integrals
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If S is closed:

• (Divergence Theorem)

If C is the edge of S:

• (Stokes’ Theorem)

div
S E

F dS FdV  
  

curl
C S

F dr F dS   
   

Surface Integrals


