Warm-up Problems

Evaluate IF .dr where F = <%xy,%x2> and
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Fundamental Theorem for Line Integrals

Why did we get the same answer for both
problems 1n the warm-up?

Wasn’t the line integral supposed to depend
on path?

What’s so special about the vector field F?



Thm. The following are equivalent.

1. F 1s conservative.
11. j F -dr is independent of path.
C

111, j F .dr =0 for any closed curve C.
C



Fundamental Theorem of Line Integrals

Let F be a conservative vector field with
potential function f(x,y), and let C be given
by r(¢) =x()i + y(¢)j fora <t <b. Then

JFodr=1(x(b).y(b)=f(x().5(a)

In other words, find the potential function and
plug 1n the endpoints (just like FTOC).



Ex. Evaluate Jf .dr where F = 2xyi + (x2 + 22)j + 2yzk
and C 1s the pciecewise smooth curve from (1,1,0) to (0,2,3).
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Ex. Evaluate Jf .dr where F= (3 + 1)i+ (3x2+ 1)j and C
1s the semlclrcular path from (0,0) to (2 O) [Do this
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Ex. Evaluate Jf .dr where F = 2xyi + (x*> — y)j and C is the
path around tﬁe triangle with vertices (0,0), (3,1), and (3,0).
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A region 1s connected 1f, between any two
points, there 1s a piecewise smooth curve in
the region that connects the points.

P

Yes



A curve 1s simple 1f 1t doesn’t cross itself.

Yes

C? c>49



A region 1s simply connected 1f its boundary
1s one simple, closed curve.

Yes

No




C
Green’s Theorem

Let R be a simply connected region with a
piecewise smooth boundary C, oriented
counterclockwise. If M and N have
continuous partial derivatives in an open
region containing R, then
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(_f)de +Qdy or (j‘}de + Qdy
C C

are sometimes used to show that C
1s a closed curve.



M N
Ex. Evaluate I yodx + (x3 + 3xy2)dy, where C is shown




Ex. Find the work done by F = i + 3xyj on a particle
travelling once around the boundary of the
semiannular region shown below.
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Ex. Evaluate j y’dx +3xy°dy , where C is the boundary of

the circle of radius 3. /\,\C |
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It’s possible to extend Green’s Theorem to
regions that have holes...

We just need to add a path.



It’s possible to extend Green’s Theorem to
regions that have holes...

We just need to add a path.

Cl Cl



