Triple Integrals
Ex. Evaluate
$$\iiint xyz^2 dV$$
 where

$$B = \left\{ (x, y, z) \middle| 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3 \right\}$$

$$= \int_{0}^{2} \int_{-1}^{2} \int_{0}^{3} xy z^2 dz dy dx = \int_{0}^{1} \int_{-1}^{2} \frac{1}{3} xy z^3 \Big|_{0}^{3} dy dx = \int_{0}^{2} \int_{-1}^{9} xy dy dx$$

$$= \int_{0}^{1} \frac{9}{2} xy^2 \Big|_{-1}^{2} dx = \int_{0}^{1} |8x - \frac{9}{2} x dx = \int_{0}^{2} \frac{27}{2} x dx$$

<u>Ex.</u> Evaluate $\iiint z dV$ where *E* is the solid bounded by the coordinate planes and the plane x + y + z = 1.

The volume of a solid Q is $V = \iiint dV$

Ex. Use triple integrals to find the volume of the tetrahedron bounded by the planes x + 2y + z = 2, x = 2y,

Triple Integrals in Spherical and Cylindrical

• In rectangular coordinates:

dV = dz dy dx

• In cylindrical coordinates:

 $dV = r dz dr d\theta$

• In spherical coordinates:

 $dV = \rho^2 \sin \varphi \, d\rho d\varphi d\theta$

$\underline{\text{Cylind}} \rightarrow \text{Rect}$	$\underline{\text{Rect}} \rightarrow \text{Cylind}$
$x = r\cos\theta$	$x^2 + y^2 = r^2$
$y = r\sin\theta$	$\tan \theta = \frac{y}{x}$
z = z	z = z

<u>Spher \rightarrow Rect</u> $x = \rho \sin \varphi \cos \theta \qquad x^2 + y^2 + z^2 = \rho^2$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \varphi$

<u>Rect \rightarrow Spher</u> $\tan \theta = \frac{y}{r}$ $\cos\varphi = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$

Ex. A solid lies within the cylinder $x^2 + y^2 = 1$, below the plane z = 4, and above the paraboloid $z = 1 - x^2 - y^2$. The density at a point is proportional to its distance to the z-axis. Find the mass.

$$m = \iiint p \, dV \qquad \begin{array}{c} 1 - (x^{2} + y^{2}) \\ 1 - r^{2} \end{array}$$

$$= \iint f \quad 4 \\ = \iint f \quad 4 \\ f \quad 5 \quad 4 \\ 1 - r^{2} \end{array}$$

$$\underline{Ex.} \text{ Evaluate } \iiint_{B} e^{\left(\frac{x^{2}+y^{2}+z^{2}}{\rho^{*}}\right)^{3/2}} dV, \text{ where } B \text{ is the unit ball.}$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} e^{\rho^{*}} \rho^{2} \rho$$

