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The bounds of the integral represent a region 
in the xy-plane, and the function represents 
a height

 So the integral represents the volume 
under the function  f (x,y) that lies above the 
region R in the xy-plane
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 General double integral
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When R is rectangular, order of integration doesn’t matter.
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Ex. Find the volume of the solid bounded by the elliptic 
paraboloid x2 + 2y2 + z = 16, the planes x = 2 and y = 2, 
and the coordinate planes.



Ex. Find the average value of f (x,y) = sin x cos y over the 
region R = [0,   ]  [0,   ].2
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To evaluate a double integral over a non-
rectangular region, we need to describe the 
region as boundaries of x and y.

Ex. Describe the region R bounded by y = 2x2

and y = 1 + x2.



Ex. Evaluate                       , where R is the region from 

the previous example.
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Ex. Find the volume that lies below z = x2 + y2 and above the 
region D in the xy-plane bounded by y = 2x and y = x2.



Ex. Evaluate             , where R is the region bounded by 

y = x – 1 and y2 = 2x + 6.
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Ex. Find the volume bounded by x + 2y + z = 2, x = 2y, x = 0, 
and z = 0



Ex. Evaluate                      by first switching the order of 

integration. 
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Double Integrals in Polar

When evaluating                       , it may be 

easier to describe R using polar coordinates.
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Ex. Describe the region using polar 
coordinates.
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Ex. Describe the region using polar 
coordinates.
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• In rectangular coordinates:

dA = dydx

• In polar coordinates:

dA = r drdθ



Ex. Evaluate                           where R is the region in the 

first two quadrants bounded by x2 + y2 = 1 and x2 + y2 = 4.
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Ex. Evaluate
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Ex. Find the volume of the solid bounded by z = 0 and the 
paraboloid z = 1 – x2 – y2.



Ex. Find the volume that lies under , above 
the xy-plane, and inside the cylinder x2 + y2 = 2x.
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