p. 717: 13-29 EOO, 37-40, 45-47
13. If $a_{n}=\frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{\sqrt[3]{n+1}} \cdot \frac{\sqrt[3]{n}}{(-1)^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1) x \sqrt[3]{n}}{\sqrt[3]{n+1}}\right|=\lim _{n \rightarrow \infty} \sqrt[3]{\frac{1}{1+1 / n}}|x|=|x|$.

By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$ converges when $|x|<1$, so $R=1$.
When $x=1$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[3]{n}}$ converges by the Alternating Series Test. When $x=1$, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ diverges because it is a p-series $\left(p=\frac{1}{3} \leq 1\right)$. Thus, the interval of convergence is $I=(-1,1]$.
17. If $a_{n}=\frac{x^{n}}{n^{4} 4^{n}}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)^{4} 4^{n+1}} \cdot \frac{n^{4} 4^{n}}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{4}}{(n+1)^{4}} \cdot \frac{x}{4}\right|=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{4} \cdot \frac{|x|}{4}$ $=1^{4} \cdot \frac{|x|}{4}=\frac{|x|}{4}$. By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{4} 4^{n}}$ converges when $\frac{|x|}{4}<1 \Leftrightarrow|x|<4$, so $R=4$. When $x=4$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ converges since it is a p-series $(p=4>1)$. When $x=-4$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}$ converges by the Alternating Series Test. Thus, the interval of convergence is $I=[-4,4]$.
21. If $a_{n}=\frac{n}{2^{n}\left(n^{2}+1\right)} x^{n}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) x^{n+1}}{2^{n+1}\left(n^{2}+2 n+2\right)} \cdot \frac{2^{n}\left(n^{2}+1\right)}{n x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n^{3}+n^{2}+n+1}{n^{3}+2 n^{2}+2 n} \cdot \frac{|x|}{2}$ $=\lim _{n \rightarrow \infty} \frac{1+1 / n+1 / n^{2}+1 / n^{3}}{1+2 / n+2 / n^{2}} \cdot \frac{|x|}{2}=\frac{|x|}{2}$. By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}\left(n^{2}+1\right)} x^{n}$ converges when $\frac{|x|}{2}<1 \Leftrightarrow|x|<2$, so $R=2$. When $x=2$, the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ diverges by the Limit Comparison Test with $b_{n}=\frac{1}{n}$. When $x=-2$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{2}+1}$ converges by the Alternating Series Test. Thus, the interval of convergence is $I=[-2,2)$.
25. If $a_{n}=\frac{(x+2)^{n}}{2^{n} \ln n}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1}}{2^{n+1} \ln (n+1)} \cdot \frac{2^{n} \ln n}{(x+2)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{\ln n}{\ln (n+1)} \cdot \frac{|x+2|}{2}=\frac{|x+2|}{2}$ because by l'Hopital's Rule, $\lim _{n \rightarrow \infty} \frac{\ln n}{\ln (n+1)}=\lim _{n \rightarrow \infty} \frac{\ln x}{\ln (x+1)}=\lim _{n \rightarrow \infty} \frac{1 / x}{1 /(x+1)}=\lim _{n \rightarrow \infty} \frac{x+1}{x}=\lim _{n \rightarrow \infty}(1+1 / x)=1$. By the Ratio Test, the series $\sum_{n=2}^{\infty} \frac{(x+2)^{n}}{2^{n} \ln n}$ converges when $\frac{|x+2|}{2}<1 \Leftrightarrow|x+2|<2 \Leftrightarrow-2<x+2<1 \Leftrightarrow$ $-4<x<0$, and $R=2$. When $x=-4$, the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}$ converges by the Alternating Series Test. When $x=0$, the series $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges by the Limit Comparison Test with $b_{n}=\frac{1}{n}$ (or by comparison with the harmonic series). Thus, the interval of convergence is $I=$
29. If $a_{n}=n!(2 x-1)^{n}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(2 x-1)^{n+1}}{n!(2 x-1)^{n}}\right|=\lim _{n \rightarrow \infty}|(n+1)(2 x-1)|=|2 x-1| \cdot \infty>0$, so by the Ratio Test, the series $\sum_{n=1}^{\infty} a_{n}=n!(2 x-1)^{n}$ converges only for $|2 x-1|=0 \Leftrightarrow 2 x=1 \Leftrightarrow x=\frac{1}{2}$.
Therefore, the radius of convergence is $R=0$, and the interval of convergence is $I=\left\{\frac{1}{2}\right\}$.
37. The correct choice is (D): Series II and III do not have radii of convergence $R=\infty$. Using the Ratio Test for Series I, $\lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{(n+1)!} \cdot \frac{n!}{(x-1)^{n}}\right|=|x-1| \lim _{n \rightarrow \infty}\left(\frac{1}{n+1}\right)=|x-1| \cdot 0=0 \Rightarrow R=\infty$. Applying the Ratio Test to Series II, we find $\lim _{n \rightarrow \infty}\left|\frac{(x+3)^{n+1}}{(n+1)^{2}} \cdot \frac{n^{2}}{(x+3)^{n}}\right|=|x-3| \cdot \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2}=|x-3| \cdot \lim _{n \rightarrow \infty}\left(\frac{1}{1+1 / n}\right)^{2}$ $=|x-3| \Rightarrow R=3$. And applying the Ratio Test to Series III gives $\lim _{n \rightarrow \infty}\left|\frac{n^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n} x^{n}}\right|$ $=|x| \cdot \lim _{n \rightarrow \infty}\left(\frac{1}{n+1} \cdot \frac{n^{n+1}}{n^{n}}\right)=|x| \cdot \lim _{n \rightarrow \infty} \frac{n}{n+1}=|x| \cdot 1=|x|$, so $R=1$.
38. If $a_{n}=\frac{(2 x+1)^{n}}{2^{n}}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(2 x+1)^{n+1}}{2^{n+1}} \cdot \frac{2^{n}}{(2 x+1)^{n}}\right|=\lim _{n \rightarrow \infty}|2 x+1| \cdot \frac{1}{2}=\frac{|2 x+1|}{2}$. By the Ratio Test the series $\sum_{n=0}^{\infty} \frac{(2 x+1)^{n}}{2^{n}}$ converges when $\frac{|2 x+1|}{2}<1 \Leftrightarrow|2 x+1|<2 \Leftrightarrow-2<2 x+1<2 \Leftrightarrow$ $-3<2 x<1 \Leftrightarrow-\frac{3}{2}<x<\frac{1}{2}$. When $x=\frac{1}{2}$, the series $\sum_{n=0}^{\infty} \frac{\left(2\left(\frac{1}{2}\right)+1\right)^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{2^{n}}{2^{n}}=\sum_{n=0}^{\infty} 1$ diverges by the Test for Divergence. When $x=-\frac{3}{2}$, the series $\sum_{n=0}^{\infty} \frac{\left(2\left(-\frac{3}{2}\right)+1\right)^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{(-2)^{n}}{2^{n}}=\sum_{n=0}^{\infty}(-1)^{n}$ also diverges by the Test for Divergence. Thus, the correct choice is (C).
39. If $a_{n}=\frac{b(x-a)^{n}}{k^{n}}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{b(x-a)^{n+1}}{k^{n+1}} \cdot \frac{k^{n}}{b(x-a)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-a)}{k}\right|$, so by the Ratio Test the series converges when $\left|\frac{(x-a)}{k}\right|<1 \Leftrightarrow|x-a|<k$. This is choice (A).
40. The series $2(x-2)+2(x-2)^{2}+(x-2)^{3}+\frac{(x-2)^{4}}{3}+\frac{(x-2)^{5}}{12}+\cdots$

$$
=\frac{2 \cdot 0}{0!}(x-2)^{0}+\frac{2 \cdot 1}{1!}(x-2)^{1}+\frac{2 \cdot 2}{2!}(x-2)^{2}+\frac{2 \cdot 3}{3!}(x-2)^{3}+\frac{2 \cdot 4}{4!}(x-2)^{4}+\frac{2 \cdot 5}{5!}(x-2)^{5}+\cdots
$$

can be written $\sum_{n=0}^{\infty} \frac{2 n(x-2)^{n}}{n!}$, which is option (D).
45. Because the series converges at $x=7$ and diverges at $x=10$, we know $2 \leq R$, but $R \leq 5$. Therefore the series must converge for all $|x-5|<2$ and must diverge for all $|x-5|>5$. Therefore, we can only be sure that statement (B), the series converges at $x=4$, is true.
46. $a_{n}=\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{(2 n+1)^{2}} \Rightarrow \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1}}{(2 n+3)^{2}} \cdot \frac{(2 n+1)^{2}}{(x+2)^{n}}\right|=\lim _{n \rightarrow \infty}|x+2|=|x+2|$. By the Ratio Test, the series converges for $|x+2|<1 \Leftrightarrow-3<x<-1$. When $x=-3$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}$ converges by the Alternating Series Test. When $x=-1$, the series $\sum_{n=1}^{\infty} \frac{1^{n}}{(2 n+1)^{2}}$ converges by comparison with the convergent p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}(p=2>1)$. So the values of x for which the series $\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{(2 n+1)^{2}}$ converges are (A) $-3 \leq x \leq-1$.
47. By the Ratio test, the series $\sum_{n=3}^{\infty} \frac{(-1)^{n+1}(x-2)^{n}}{n \ln n}$ converges for $|x-2|<1 \Leftrightarrow 1<x<3$. When $x=1$, the series is divergent by Integral Test. When $x=3$, the series $\sum_{n=3}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$ is convergent by the Alternating Series Test. Therefore $x=3$ is in the interval of convergence of the power series. This is choice (C).

