- p. 697: 11-27 odd, 40-44
- 11. $\frac{2}{3} \frac{2}{5} + \frac{2}{7} \frac{2}{9} + \frac{2}{11} \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2}{2n+1}$. Now $b_n = \frac{2}{2n+1} > 0$, $\{b_n\}$ is decreasing, and $\lim_{n \to \infty} b_n = 0$, so the series converges by the Alternating Series Test.
- 13. $\frac{1}{\ln 3} \frac{1}{\ln 4} + \frac{1}{\ln 5} \frac{1}{\ln 5} + \frac{1}{\ln 7} \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n+2)}$. Now $b_n = \frac{1}{\ln(n+2)} > 0$, $\{b_n\}$ is decreasing, and $\lim_{n \to \infty} b_n = 0$, so the series converges by the Alternating Series Test.
- 15. $\sum_{n=0}^{\infty} (-1)^{n+1} b_n = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+1}}. \text{ Now } b_n = \frac{1}{\sqrt{n+1}} > 0, \{b_n\} \text{ is decreasing, and } \lim_{n \to \infty} b_n = 0, \text{ so the series converges by the Alternating Series Test.}$
- 17. $\sum_{n=1}^{\infty} (-1)^n b_n = \sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^2 + n + 1}.$ Now $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n^2}{n^2 + n + 1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n} + \frac{1}{n^2}} = 1 \neq 0.$ Because $\lim_{n \to \infty} b_n \neq 0$ (in fact the limit does not exist), the series diverges by the Test for Divergence.
- 19. $b_n = \frac{\sqrt{n}}{2n+3} > 0$ for $n \ge 1$. $\{b_n\}$ is decreasing for $n \ge 2$ since $\left(\frac{\sqrt{x}}{2x+3}\right)' = \frac{(2x+3)\left(\frac{1}{2}x^{-1/2}\right) x^{1/2}(2)}{(2x+3)^2} = \frac{\frac{1}{2}x^{-1/2}\left[(2x+3) 4x\right]}{(2x+3)^2} = \frac{3 2x}{2\sqrt{x}(2x+3)^2} < 0 \text{ for } x > \frac{3}{2}. \text{ In }$

addition, $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{\sqrt{n}/\sqrt{n}}{(2n+3)/\sqrt{n}} = \lim_{n\to\infty} \frac{1}{2\sqrt{n}+3\sqrt{n}} = 0$. Thus, the series $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{2n+3}$ converges by the Alternating Series Test.

- 21. $b_n = ne^{-n} = \frac{n}{e^n} > 0$ for $n \ge 1$. $\{b_n\}$ is decreasing for $n \ge 1$ since $\left(xe^{-x}\right)' = x(-e^{-x}) + e^{-x} = e^{-x}(1-x) < 0$ for x > 1. In addition, $\lim_{n \to \infty} b_n = 0$ since by l'Hopital's Rule $\lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0$. Thus, the series $\sum_{n=1}^{\infty} (-1)^{n+1} ne^{-n}$ converges by the Alternating Series Test.
- 23. $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \arctan n = \frac{\pi}{2}$, so $\lim_{n\to\infty} (-1)^{n-1} \arctan n$ does not exist. Thus, the series $\sum_{n=1}^{\infty} (-1)^{n-1} \arctan n$ diverges by the Test for Divergence.
- 25. $\frac{n\cos n\pi}{2^n} = (-1)^n \frac{n}{2^n} \Rightarrow b_n = \frac{n}{2^n} > 0. \ \{b_n\} \text{ is decreasing for } n \ge 2 \text{ since} \left(x2^{-x}\right)' = x(-2^{-x}\ln 2) + 2^{-x}$ $= 2^{-x}(1 x\ln 2) < 0 \text{ for } x > \frac{1}{\ln 2}. \text{ In addition, by l'Hopital's Rule, } \lim_{n \to \infty} b_n = \lim_{x \to \infty} \frac{x}{2^x} = \lim_{x \to \infty} \frac{1}{2^x \ln 2} = 0.$ Thus, the series $\sum_{n=0}^{\infty} \frac{n\cos n\pi}{2^n} \text{ converges by the Alternating Series Test.}$
- 27. $\lim_{n\to\infty}\cos\left(\frac{\pi}{n}\right)=\cos(0)=1$, so $\lim_{n\to\infty}\left(-1\right)^n\cos\left(\frac{\pi}{n}\right)$ does not exist and the series $\sum_{n=1}^{\infty}\left(-1\right)^n\cos\left(\frac{\pi}{n}\right)$ diverges by the Test for Divergence.

- 40. $\sum \frac{\sqrt{n-3}}{n^2}$ converges by comparison to $\sum \frac{1}{n^{3/2}}$ (convergent by *p*-series Test), so $\sum (-1)^n \frac{\sqrt{n-3}}{n^2}$ converges by Absolute Convergence Test. Therefore, choice (B) is correct.
- 41. If p = 2, the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 + 2}{n^p + 4} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 + 2}{n^2 + 4}$ does not converge by the Test for Divergence because $\lim_{n \to \infty} \frac{n^2 + 2}{n^2 + 4} = \lim_{n \to \infty} \frac{1 + \frac{2}{n^2}}{1 + \frac{4}{n^2}} = 1 \neq 0$. However, if p = 3, the terms $b_n = \frac{n^2 + 2}{n^3 + 4}$ are positive, and decreasing and $\lim_{n \to \infty} \frac{\frac{1}{n} + \frac{2}{n^3}}{1 + \frac{4}{n^3}} = 0$. Thus, the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 + 2}{n^p + 4} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 + 2}{n^3 + 4}$ converges. Therefore, choice (B) is correct.
- 42. $|R_4| = |s s_4| = |s_5| = \left| -\frac{4}{3^5} \right| = \frac{4}{243}$, option (A).
- 43. The error bound is $|R_n| = |s s_n| = |s_{n+1}| = \frac{1}{(n+1)^2}$, so we need $\frac{1}{(n+1)^2} < \frac{1}{1000} \Rightarrow (n+1)^2 > 1000 \Rightarrow n > 11$. Of the values given, the smallest that is larger than 11 is (B), n = 24.
- 44. $\lim_{n\to\infty} \sqrt{\frac{n}{n+1}} = \lim_{n\to\infty} \sqrt{\frac{1}{1+1/n}} = 1 \neq 0$, so series (**D**) diverges by the Test for divergence.
- p. 706: 11-15 odd
- 11. $b_n = \frac{1}{\sqrt{n}} > 0$ for $n \ge 1$, $\{b_n\}$ is decreasing for $n \ge 1$, and $\lim_{n \to \infty} b_n = 0$, so $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ converges by the Alternating Series Test. To determine absolute convergence, note that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges because it is a p-series with $p = \frac{1}{2} \le 1$. Thus, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ is conditionally convergent.
- 13. $0 < \frac{1}{n^3 + 1} < \frac{1}{n^3}$ for $n \ge 1$ and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is a convergent *p*-series (p = 3 > 1), so $\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$ converges by comparison and the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3 + 1}$ is absolutely convergent.
- 15. $b_n = \frac{n}{n^2 + 4} > 0$ for $n \ge 1$, $\{b_n\}$ is decreasing for $n \ge 2$, and $\lim_{n \to \infty} b_n = 0$, so $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 4}$ converges by the Alternating Series Test. To determine absolute convergence, choose $a_n = \frac{1}{n}$ to get $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{n}{n^2 + 4}} = \lim_{n \to \infty} \frac{n^2 + 4}{n^2} = \lim_{n \to \infty} \frac{1 + \frac{4}{n^2}}{1} = 1 > 0$, so $\sum_{n=1}^{\infty} \frac{n}{n^2 + 4}$ diverges by the Limit

Comparison Test with the harmonic series. Thus, the series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 4}$ is conditionally convergent.