p. 765: 15-25 odd, 27-29, 44, 54-55, 65-66

15. (a) $x - 5i + 2$, $y - 2i + 3$	15. ((a)	x = 3t + 2,	y = 2t + 3
-------------------------------------	-------	-----	-------------	------------

t	-4	-2	0	2	4
x	-10	-4	2	8	14
y	-5	-1	3	7	11

(b)
$$x = 3t + 2 \Rightarrow 3t = x - 2 \Rightarrow t = \frac{1}{3}x - \frac{21}{3}$$
, so
 $y = 2t + 3 = 2(\frac{1}{3}x - \frac{2}{3}) + 3 = \frac{2}{3}x - \frac{4}{3} + 3 \Rightarrow y = \frac{2}{3}x + \frac{5}{3}$

17. (a)
$$y = \sin t$$
, $y = 1 - \cos t$, $0 \le t \le 2$

t	0	$\pi/2$	0	$3\pi/2$	2π
x	0	1	0	-1	0
y	0	1	2	1	0

(b)
$$y = \sin t, y = 1 - \cos t \text{ [or } y - 1 = -\cos t \text{]} \Rightarrow x^2 + (y - 1)^2 = (\sin t)^2 + (-\cos t)^2 \Rightarrow x^2 + (\sin t)^2 = (\sin t)^2 + (\cos t)^2 \Rightarrow x^2 + (\cos t)$$

 $x^2 = (y-1)^2 = 1$. As t varies from 0 to 2π , the circle with center (0,1) and radius 1 is traced out.

19. (a)
$$y = t^2$$
, $y = t^3$

t	-2	-1	0	1	2
x	4	1	0	1	4
y	-8	-1	0	1	8

(b)
$$y = t^3 \Rightarrow t = \sqrt[3]{y} \Rightarrow x = t^2 = \left(\sqrt[3]{y}\right)^2 = y^{2/3}$$

 $t \in \mathbb{R}, y \in \mathbb{R}, x \ge 0.$

(b)

21. (a)
$$x = \frac{1}{2}\cos\theta$$
, $y = 2\sin\theta$, $0 \le \theta \le \pi$.

$$\left(\frac{1}{2}x\right)^2 + \left(\frac{1}{2}y\right)^2 = \cos^2\theta + \sin^2\theta = 1 \Rightarrow 4x^2 + \frac{1}{4}y^2 = 1 \Rightarrow$$

 $\frac{x^2}{(1/2)^2} + \frac{y^2}{2^2} = 1, \text{ which is an equation of an ellipse with } x\text{-intercepts} \pm \frac{1}{2}$ and $y\text{-intercepts} \pm 2$. For $0 \le \theta \le \pi/2$, we have $\frac{1}{2} \ge x \ge 0$ and $0 \le y \le 2$. For $\pi/2 < \theta \le \pi$, we have $0 > x \ge -\frac{1}{2}$ and $2 > y \ge 0$. So the graph is the top half of an ellipse.

23. (a)
$$y = e^{-2t} = (e^t)^{-2} = x^{-2} = \frac{1}{x^2}$$
 for $x > 0$ since $x = e^t$.

25. (a)
$$x = \sqrt{t+1} \Rightarrow x^2 = t+1 \Rightarrow t = x^2 - 1$$
. (b) $y = \sqrt{t-1} = \sqrt{(x^2-1)-1} = \sqrt{x^2-2}$.

The curve is the part of the hyperbola $x^2 - y^2 = 2$, with $x \ge \sqrt{2}$ and $y \ge 0$.

27.
$$y = 2t + 3 \Rightarrow \frac{y - 3}{2} = t$$
. $x = t^2 + 1 \Rightarrow x = \left(\frac{y - 3}{2}\right)^2 + 1 = \frac{y^2 - 6y + 9}{4} + 1 = \frac{y^2 - 6y + 13}{4}$, option (B).

28. If
$$x = \ln t$$
, then $e^x = t \implies y = 2t^2 = 2(e^x)^2 = 2e^{2x}$, choice (C).

29. Let
$$t = 1 - x \Rightarrow 1 = t + x \Rightarrow x = 1 - t$$
. Then $y = \sqrt{\frac{x}{1 - x}} = \frac{\sqrt{x}}{\sqrt{1 - x}} = \frac{\sqrt{1 - t}}{\sqrt{t}} = \sqrt{\frac{1 - t}{t}}$, which is choice (B).

44. This curve is a quarter of a circle of radius 6, so the length of the path traveled by the particle is $\frac{1}{4}(2\pi \cdot 6) = \frac{12\pi}{4} = 3\pi.$

54.
$$x = t + 1$$
, $y = 1 - 2t^2 \Rightarrow \frac{dx}{dt} = 1$, $\frac{dy}{dt} = -4t \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} / \frac{dt}{dt} = \frac{-4t}{1} = -4t$. Critical points occur when

$$\frac{dy}{dx} = 0 \iff -4t = 0 \iff t = 0. \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{-4}{1} = -4 < 0. \text{ Because the curve is concave}$$

down when t = 0, the point when t = 0 is a maximum on the curve. At this point, x = 0 + 1 = 1 and y = 1 - 2(0) = 1, so the x- and y-coordinates of this point are (A), (1,1).

55. Looking ahead to the next section, we know $L = \int_0^{\pi/3} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$. In this case, we have

$$x = \cos 2t \Rightarrow \frac{dx}{dt} = -2\sin 2t$$
 and $y = \sin 2t \Rightarrow \frac{dy}{dt} = 2\cos 2t$.

This means $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \left(-2\sin 2t\right)^2 + \left(2\cos 2t\right)^2 = 4\left(\sin^2 2t + \cos^2 2t\right) = 4$, so the length of the

path is
$$L = \int_0^{\pi/3} \sqrt{4} dt = \int_0^{\pi/3} 2 dt = 2t \Big|_0^{\pi/3} = \frac{2\pi}{3}$$
, option (**B**).

. . . .

65. (a) $x = t^3 \implies t = x^{1/3}$, so $y = t^2 = x^{2/3}$

We get the entire curve $y = x^{2/3}$ traversed in a left to right direction.

(b) $x = t^6 \implies t = x^{1/6}$, so $y = t^4 = x^{2/3}$

Since $x = t^6 \ge 0$, we only get the right half of the curve $y = x^{2/3}$.

(c) $x = e^{-3t} = (e^{-t})^3$, $\left[\text{so } e^{-t} = x^{1/3}\right]$, $y = e^{-2t} = (e^{-t})^2 = (x^{1/3})^2 = x^{2/3}$. If t < 0, then x and y are both larger than 1. If t > 0, then x and y are between 0 and 1. Since x > 0 and y > 0, the curve never quite reaches the origin.

66. (a) x = t, so $y = t^{-2} = x^{-2}$. We get the entire curve $y = 1/x^2$ traversed in a left-to-right direction.

(b) $x = \cos t$, $y = \sec^2 t = \frac{1}{\cos^2 t} = \frac{1}{x^2}$. Because $\sec t \ge 1$, we only get the parts of

the curve $y = 1/x^2$ with $y \ge 1$. We get the first quadrant portion of the curve when x > 0, that is, $\cos t > 0$, and we get the second quadrant portion of the curve when x < 0, that is, $\cos t < 0$.

(c) $x = e^t$, $y = e^{-2t} = (e^t)^{-2} = x^{-2}$. Since e^t and e^{-2t} are both positive, we only get the first quadrant portion of the curve $y = 1/x^2$.

