Name ______ Period

Calculus BC - Semester 1 Final Review

EY

1. The position of a car is given by the values in the table:

t (seconds) 0	1	2	3	4	5	3:48,667	2:43.5	1:38
s (feet)	0	10	32	70	119	178	5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.00

(A)Find the average velocity for the time period beginning when t = 2 and lasting: 3 sec., 2 sec., 1 sec.

(B) Use the information from part (A) and other calculations to approximate the instantaneous velocity

when
$$t = 2$$
. 30
2. Calculate derivative:

(A)
$$y = (x+2)^8 (x+3)^6$$
 $\gamma' = 8(x+2)^7 (x+3)^6 + 6(x+3)^5 (x+2)^8$
(B) $y = (x+\frac{1}{x^2})^5$ $\gamma' = 5(x+\frac{1}{x^2})^4(1-\frac{2}{x^3})$
(C) If $f(x) = \frac{1}{(2x-1)^{\sqrt{7}}}$, find $f''(1)$. $28 + 4\sqrt{7}$

3. Calculate derivative:

(A)
$$y = \cos(3x^{2} + 5)$$
 $y' = -6x \sin(3x^{2} + 5)$
(B) $y = \sin^{-1}(e^{x})$ $y' = -6x \sin(3x^{2} + 5)$
(C) $y = (x + \sin x)^{\pi}$ $y' = \frac{e^{x}}{\sqrt{1 - e^{2x}}}$
(C) $y = (x + \sin x)^{\pi}$ $y' = \pi(x + \sin x)^{\pi - 1}(1 + \cos x)$
(I) $y = \csc(x - \sin x)$ $y' = -\csc(x - \sin x) \cot(x - \sin x)(1 - \cos x)$
(T) $y = 1 (x^{2})$ $y' = 2 \tan x$

(B)
$$f = \inf(\sec x)$$
 $f'''(x)$. $f'''(x) = (ln 2)^3 2^{x}$

5. The table below gives values for the functions f and g, as well as their derivatives.

5.	The lable below g	gives values for i	ne functions	j and g, as we	If as then del	Ivauves.	
	x	-1	0	1	2	3	
	f	3	3	1	0	1	
	g	· 1	2	2.5	3	4	
	f'	-3	-2	-1.5	-1	. 1	
	<i>g</i> ′	2	3	2	2.5	3	
				$=-1. \frac{d}{dt}(f)$		$\frac{d}{dx}\left(\frac{F}{3}\right) = -\frac{G}{2}$	1
	(B) Find $\frac{d}{dx}f$	$f(g(x))$ and $\frac{d}{dx}$	g(f(x)) at	$x = 0. \frac{d}{dx} f$	(9)=-3	$\frac{d}{dx}g(f) = -$	6
6.	Find $\frac{dy}{dx}$:	$=3x$ d_{x}	3-2-	·Zxy		(au) av	
	(A) $x^2y + xy^2$	$=3x$ d_{h}	= x +	2xy o	by aco	e (ax)-y	
	(B) $\sin(ax) +$	$\cos(by) = xy ($	a and b are	constants)	x = b ai	(by) + X	
	(C) Find the s	lope of the curve	$x^2 + 3v^2 =$	7 at the point (-2	. 1). m =	2/3	<u> </u>
7.	Find all local max						, no int.
8.	Find all local max	x./min. points an	d inflection p	points for $y = x^2 d$	x^{5x} . $\chi = 0$		
					x= 15.	many X=-,117	') /

- 9. Find the absolute max./min. values of $y = \frac{x}{x^2 + 1}$ on the interval [0, 2]. $x = \frac{1}{2}$
- 10. The volume of a cube is increasing at a rate of 10 cm³/min. How fast is the surface area increasing when the length of an edge is 30 cm.?
 11. A balloon is rising at a constant rate of 5 ft./sec. A boy is cycling along a straight road at a speed of 15
- ft./sec. When he passes under the balloon it is 45 ft above him. How fast is the distance between the boy and the balloon increasing 3 sec. later? 13 for face.
 12. The angle of elevation of the sun is decreasing at a rate of 0.25 rad./hr. How fast is the shadow cast by a
- 400-ft-tall building increasing when the angle of elevation is $\frac{\pi}{6}$? $400 \frac{\mu}{\mu}$
- 13. A 10 ft. ladder is leaning up against the side of a building, but slipping so that the top of the ladder is descending at a rate of 3 ft./sec. What is the rate at which the base of the ladder moves away from the building when the top is 6 ft. from the ground? $\frac{1}{4}$ $\frac{1}{4}$ /acc. 14. Find two positive integers such that the sum of the first number and four times the second number is 1000
- and the product of the numbers is as large as possible. 500, 12515. The top and bottom margins of a poster are each 6 cm. and the side margins are each 4 cm. If the area of
- printed material on the poster is 384 cm², find the dimensions of the entire poster with the smallest area. 36 cm x24 cm. 16. Limits

(A)
$$\lim_{x \to 0} \frac{\sin(a+2x) - 2\sin(a+x) + \sin a}{x^2} = - \sum_{x \to \infty} a$$

(B)
$$\lim_{x \to \infty} \frac{x}{\ln(1+2e^x)} = |$$

(C)
$$\lim_{x \to \pi} \frac{(x-\pi)}{\tan x} = |$$

- 17. Riemann Sums
 - (A) The value of $\int_{0}^{2} (x^{2} x) dx$ is estimated using 4 subintervals. Find the estimates using left- and right-hand sums. (B) Consider the function with values given in the table below. Approximate $\int_{0}^{6} f(x) dx$ using left- and

right-ha	1.11.0								
	x	0	1	2	3	4	5	6	CHS =
	f(x)	1	2.5	3	1	-2	-3.5	-4	RHS=

18. Area under a curve

(A) Find the area under one arch of the curve $y = \sin x$.

(B) Assume f(x) is a positive function on the interval [2,5]. If $\int (2f(x)+3) dx = 17$, find the area

under the curve f(x) on the interval [2,5].

(C) Find the area bounded by $y = x^2 - 9$ and the x-axis. 36

(D) Without a calculator, compute
$$\int_{-1}^{1} \sqrt{1-x^2} dx$$
. $\frac{1}{1/2}$

- 19. Average value of a function:
- 76.817 mil (A) Assume the population, P, of Mexico (in millions), is given by $P = 67.38(1.026)^t$, where t is the number of years since 1980. What was the average population of Mexico between 1980 and 1990?
 - (B) A bar of metal is heated, and then allowed to cool. The temperature, H, of the bar t minutes after it starts cooling is given, in °C, by $H = 20 + 980e^{-0.1t}$. Find the average value of the temperature over the first hour. 1829280
- 20. Fundamental Theorem of Calculus
 - (A) The rate at which the world's oil is being consumed is continuously increasing. Suppose the rate (in billions of barrels per year) is given by the function $r = 32e^{0.05t}$, where t is measured in years since 1990. Find the total quantity of oil used between 1990 and 1995. 181.776 Lil.
 - (B) Assume that r(t) represents the rate at which a country's debt is growing, where t is years since

1990. In terms of debt, explain the meaning of $\int_{0}^{10} r(t) dt$. increase in debt from 1990 to 2000

21. Find the total area bounded by the curve f(x) = x(x-4)(x-1) and the x-axis. $7\frac{1}{2}$ 22. Find an antiderivative of each of the following:

(A)
$$\pi + x^2 + \frac{1}{\pi x^2}$$
 $\pi \times + \frac{1}{3} \times^3 - \frac{1}{\pi \times}$
(B) $\sqrt{x} - \frac{1}{x\sqrt{x}}$ $\frac{2}{3} \times^{3/2} + \frac{2}{\sqrt{x}}$
(C) $\cos(2\theta)$ $\frac{1}{2} \sin(2\theta)$
(D) $e^t + e^3$ $e^{-\frac{1}{2}} + \frac{e^3}{4}$
(E) $\frac{2}{x} + \frac{x}{2}$ $2h \cdot |x| + \frac{x^2}{4}$

23. On Planet Janet, the gravitational constant g is -15 feet per second per second. A ball is launched upward a=-15 from the ground at time t = 0 at 60 feet per second.

- (A) Find the equations for the ball's acceleration a, velocity v, and position s. $\sqrt{-15} t + 60$ S=-1512460t
- (B) Find the peak height of the ball. 120 /t

(C) On Planet Nanette, g is -5. Find the peak height of the ball. 360 M. 24. Evaluate the following: 9/-

(A)
$$\int (x^2 + e^{3x}) (x^3 + e^{3x})^{\frac{4}{5}} dx$$
 $\frac{5}{27} (x^3 + e^{-3x})^{\frac{4}{5}} + C$
(B) $\int \frac{\cos(\ln x)}{x} dx$ $\sin(hx) + C$
(C) $\int \frac{8e^{-2w}}{6 - 5e^{-2w}} dw$ $\frac{4}{5} \ln |b - 5e^{-2w}| + C$
(D) $\frac{d}{dx} \int_{e}^{x} \log_{5}(t^{21}) \sin(\sqrt{t}) dt$ $\log_{5}(x^{21}) \sin(\sqrt{t})$

25. The function f(t) is graphed at right and we define

$$F(x) = \int_{0}^{x} f(t) dt$$
. Are the following statements true

or false? Justify your answer.

- (A) F(x) is positive for all x between 2 and 3. T
- (B) F(x) is decreasing for all x between 1 and 3. F^{\parallel}
- (C) F(x) is concave down at $x = \frac{1}{2}$.

26. Evaluate the following:

(A)
$$\int 4x^5 dx \qquad \frac{2}{3} \times 6 + C$$

(B) $\int \frac{x^2 - x + 1}{x} dx \qquad \frac{1}{2} \times 2^2 - \chi + \frac{1}{2} \times 4 + C$
(C) $\int e^x \cos(e^x) dx \qquad \sin(e^x) + C$

27. Find an antiderivative for each of the following:

(A)
$$x^{2} - \frac{3}{x} + \frac{2}{x^{3}}$$
 $\frac{1}{3} \times ^{3} - 3 \ln |x| - \frac{1}{x^{2}}$
(B) $\left(x + \sqrt{\sin(2x+3)}\right) \left(x - \sqrt{\sin(2x+3)}\right)$ $\frac{1}{3} \times ^{3} + \frac{1}{2} \cos(2x+3)$

28. Find $\int \frac{dx}{dx} \sin 5x \, dx = \frac{1}{5} x^2 \cos 5x + \frac{2}{25} x \sin 5x + \frac{2}{125} \cos 5x + C$

29. Evaluate the following:

(A)
$$\int \sec^2 \theta \, d\theta$$
 $\tan \theta + C$
(B) $\int ze^{3z^2+1} dz$ $\frac{1}{6}e^{3z^2+1} + C$

30. Evaluate the following:

(A)
$$\int y \sec^2 y \, dy$$
 $\forall tan \gamma - bn \int \frac{dx}{b + ax^2}$
(B) $\int \frac{dx}{(b + ax)^2}$ $a, b \text{ constants}$ $-\frac{1}{a} \frac{1}{b + ax^2} + C$

31. Evaluate the following:

(A)
$$\int \frac{x^3 + 1}{x^2} dx$$
 $\frac{1}{2} \chi^2 - \frac{1}{\chi} + C$
(B) $\int \frac{x^2}{x^3 + 1} dx$ $\frac{1}{3} \ln |x^3 + 1| + C$
(C) $\int \frac{\sqrt{\ln x}}{x} dx$ $\frac{2}{3} (\ln x)^{3/2} + C$
(D) $\int \sin(3x) e^{\cos(3x)} dx - \frac{1}{3} e^{\cos(3x)} + C$

12

32. The following are some of the values for a function G(x).

x	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
G(x)	0	0.1	0.199	0.296	0.390	0.480	0.567	0.649	0.726	0.798	.0866

Use these values to approximate the value of $\int_{0}^{1} G(x) dx$ using the Midpoint Rule with 5 subintervals. $\mathcal{A} = \mathcal{A} + \mathcal{A} + \mathcal{A}$

- 33. Consider the differential equation $\frac{dy}{dx} = x^2 + y$.
 - (A) Use Euler's method with two steps to approximate the value of y when x = 2 on the solution curve that passes though the point (1,3). $\begin{cases} 2 & 5 \end{cases}$

(B) Is your approximate value of y an under- or over-estimate of the exact value? Justify your answer. 34. Solve the initial value problem: y' > 0

(A)
$$\frac{dy}{dx} = \frac{x}{y}, y(1) = 0.3 \quad y = \sqrt{x^2 + 8}$$

(B) $\frac{dy}{dx} = y^2 + 1, y(0) = 1 \quad y = \sqrt{4} \quad (x + \frac{\pi r}{4})$
35. Solve the initial value problem $\frac{dy}{dx} = \frac{5}{1+y}, y(0) = 2 \quad y + \frac{1}{2}y^2 = 5x + 4$
36. Solve the initial value problem:
(A) $\frac{dy}{dx} = xy, y(0) = 5 \quad y = 5e^{-t/t} x^2$
(B) $\frac{dy}{dx} = x \sec y, \qquad y = 5e^{-t/t} (\frac{1}{2}x^2)$
37. Solve the initial value problem $\frac{dy}{dx} = \frac{\cos^2 y}{x}, y(1) = \frac{\pi}{4} \quad y = \sqrt{4} - \frac{1}{2} \left[\frac{1}{2} x + \frac{1}{2} \right]$
38. Consider the differential equation $\frac{dP}{dt} = 0.0005P(1000 - P)$ with initial condition $P(0) = 1$.
(A) Find the size of the population P when the rate of chance of the population is a maximum. $P = 500$
(C) Sketch a graph of the population as a function of time.
(D) Find $\lim_{t \to \infty} P(t)$. $\frac{1}{2}00$

39. Consider the region bounded by $y = e^x$, the x-axis, and the lines x = 0 and x = 1. Find the volume of the solid whose base is the given region and whose cross sections perpendicular to the x-axis are isosceles right triangles with hypotenuse lying in the region. 7999

40. What is the arc length of $y = \frac{2}{3}x^{3/2}$ from x = 0 to x = 4? (787)