MVT, IVT, and EVT Worksheet

For problems 1-8, determine if the Mean Value Theorem applies to the function on the given interval. If it does, find the c-value. If it doesn't, explain why not.

1. $f(x)=|x|$
$[-1,3]$
2. $f(x)=x^{2}-2 x$
$[1,3]$
3. $f(x)=x^{2}-3 x+2$
$[1,2]$
4. $f(x)=x^{2 / 3}$
$[-2,2]$
5. $f(x)=\frac{1}{x-4}$
$[2,6]$
6. $f(x)=\frac{x^{2}-x}{x}$
$[-1,1]$
7. $f(x)=\sin x$
$[0, \pi]$
8. $f(x)=\tan x$
$[0, \pi]$

For problems 9-13, determine if the Intermediate Value Theorem would guarantee a c-value on the given interval.
9. $f(x)=x^{2}+x-1$

$$
f(c)=11
$$

$[0,5]$
10. $f(x)=\frac{x}{x-1}$
$f(c)=1$
[0,2]
11. $f(x)=|x|$
$f(c)=3$
$[-4,1]$
12. $f(x)= \begin{cases}x & x \leq 1 \\ 3 & x>1\end{cases}$
$f(c)=2$
$[0,4]$
13. $f(x)=\frac{x^{2}+x}{x-1}$
$f(c)=6$
$\left[\frac{5}{2}, 4\right]$

For problems 14-16, find the c-values for the given problem.
14. Problem 9
15. Problem 11
16. Problem 13

For Problems 17-21, use the table below with selected values of the twice differentiable function k. Reach each explanation and decide whether you would apply IVT, EVT, or MVT.

x	1	2	3	4	5	6	7
$k(x)$	5	2	-4	-1	3	2	0

17. Since k is differentiable, it is also continuous. Since $k(6)=2$ and $k(7)=0$, and since 1 is between 2 and 0 , it follows by \qquad that $k(c)=1$ for some c between 6 and 7.
18. Since k is differentiable and, therefore, also continuous, and since $\frac{k(3)-k(2)}{3-2}=-6$, it follows by \qquad that $k^{\prime}(c)=-6$ for some c in the interval $(2,3)$.
19. There must be a minimum value for k at some r in $[1,7]$, because k is differentiable and, therefore, also continuous. Hence the \qquad applies.
20. There must be some value a in $(2,6)$ for which $k^{\prime}(a)=0$, because $k(2)=k(6)$, and since k is differentiable, the \qquad applies.
21. Since k is differentiable, the \qquad guarantees some a in $(4,5)$ for which $k^{\prime}(a)=4$ and also some b in $(5,6)$ for which $k^{\prime}(b)=-1$. Then since k^{\prime} is differentiable, and therefore also continuous, it follows by the \qquad applied to k^{\prime} that $k^{\prime}(c)=0$ for some c in (a, b) and therefore in $(4,6)$.
