MVT, IVT, and EVT Worksheet

For problems 1-8, determine if the Mean Value Theorem applies to the function on the given interval. If it does, find the c-value. If it doesn't, explain why not.

1. f(x) = |x| [-1,3]

2.
$$f(x) = x^2 - 2x$$
 [1,3]

3.
$$f(x) = x^2 - 3x + 2$$
 [1,2]

4.
$$f(x) = x^{2/3}$$
 [-2,2]

5.
$$f(x) = \frac{1}{x-4}$$
 [2,6]

6.
$$f(x) = \frac{x^2 - x}{x}$$
 [-1,1]

7.
$$f(x) = \sin x$$
 $[0,\pi]$

8.
$$f(x) = \tan x$$
 $[0,\pi]$

For problems 9-13, determine if the Intermediate Value Theorem would guarantee a c-value on the given interval.

9.
$$f(x) = x^{2} + x - 1$$
 $f(c) = 11$ [0,5]
10. $f(x) = \frac{x}{x - 1}$ $f(c) = 1$ [0,2]

11.
$$f(x) = |x|$$
 $f(c) = 3$ $[-4,1]$

12.
$$f(x) = \begin{cases} x & x \le 1 \\ 3 & x > 1 \end{cases}$$
 $f(c) = 2$ [0,4]

13.
$$f(x) = \frac{x^2 + x}{x - 1}$$
 $f(c) = 6$ $\left[\frac{5}{2}, 4\right]$

For problems 14-16, find the c-values for the given problem.

14. Problem 9

~

15. Problem 11

16. Problem 13

For Problems 17-21, use the table below with selected values of the twice differentiable function k. Reach each explanation and decide whether you would apply IVT, EVT, or MVT.

x	1	2	3	4	5	6	7
k(x)	5	2	-4	-1	3	2	0

- 17. Since k is differentiable, it is also continuous. Since k(6) = 2 and k(7) = 0, and since 1 is between 2 and 0, it follows by ______ that k(c) = 1 for some c between 6 and 7.
- 18. Since k is differentiable and, therefore, also continuous, and since $\frac{k(3)-k(2)}{3-2} = -6$, it follows by _____ that k'(c) = -6 for some c in the interval (2,3).
- 19. There must be a minimum value for k at some r in [1,7], because k is differentiable and, therefore, also continuous. Hence the ______ applies.
- 20. There must be some value a in (2,6) for which k'(a) = 0, because k(2) = k(6), and since k is differentiable, the _____ applies.
- 21. Since k is differentiable, the _____ guarantees some a in (4,5) for which k'(a) = 4and also some b in (5,6) for which k'(b) = -1. Then since k' is differentiable, and therefore also continuous, it follows by the _____ applied to k' that k'(c) = 0 for some c in (a,b) and therefore in (4,6).