Name	
Period	

Calculus BC – Chapter I Sample Test (calculators allowed)

Show all work for free-response questions.

1. Let f be a differentiable function such that $\int f(x) \sin x dx = -f(x) \cos x + \int 4x^3 \cos x dx$. Which of the following could be f(x)?

(A) $\cos x$ (B) $\sin x$ (C) $4x^3$ (D) $-x^4$ (E) x^4

2. If
$$\int_{0}^{k} \frac{x}{x^{2} + 4} dx = \frac{1}{2} \ln 4$$
, where $k > 0$, then $k =$
(A) 0 (B) $\sqrt{2}$ (C) 2 (D) $\sqrt{12}$ (E) $\frac{1}{2} \tan(\ln \sqrt{2})$

3. A particle moves along the y -axis so that its velocity at any time $t \ge 0$ is given by $v(t) = t \cos t$. At time t = 0, the position of the particle is y = 3. Write an expression for the position y(t) of the particle.

4. A particle moves along the x-axis so that its velocity at any time $t \ge 0$ is given by $v(t) = -(t+1)\sin\left(\frac{t^2}{2}\right)$. It is known that its initial position is x(0) = 7.

a. Is the particle moving to the left or to the right at time t = 2? Justify your answer.

b. Is the velocity of the particle increasing or decreasing at time t = 2? Justify your answer.

c. Is the speed of the particle increasing or decreasing at time t = 2? Justify your answer.

d. Find the times at which the particle changes directions on the interval $0 \le t \le 4$. Justify your answer.

e. Find all times on the interval $0 \le t \le 4$ where the speed is equal to 3.

f. Find x(4).

g. Find the distance traveled by the particle on the interval $0 \le t \le 4$.

Name	
Period	

Calculus BC - Chapter I Sample Test (no calculators)

Show all work for free-response questions. $\frac{\pi}{2}$

1.
$$\int_{0}^{\frac{1}{4}} e^{\tan x} \sec^{2} x \, dx =$$
(A) 0 (B) 1 (C) $e - 1$ (D) e (E) $e + 1$

$$2. \quad \int x^7 \ln x \, dx =$$

(A)
$$x^8 \ln x - \frac{1}{8}x^8 + C$$

(B) $\frac{1}{64}x^8 \ln x - \frac{1}{64}x^8 + C$
(C) $\frac{1}{8}x^7 + \frac{1}{x} + C$
(D) $\frac{1}{8}x^8 \ln x - \frac{1}{64}x^8 + C$

3.
$$\int_{0}^{1} x\sqrt{1+8x^{2}} dx =$$
(A) $\frac{1}{24}$ (B) $\frac{13}{12}$ (C) $\frac{9}{8}$ (D) $\frac{52}{3}$ (E) 18

4. Using the substitution $u = x^2 - 3$, $\int_{-1}^{4} x(x^2 - 3)^5 dx$ is equal to which of the following?

(A)
$$2 \int_{-2}^{13} u^5 du$$
 (B) $\int_{-2}^{13} u^5 du$ (C) $\frac{1}{2} \int_{-2}^{13} u^5 du$
(D) $\int_{-1}^{4} u^5 du$ (E) $\frac{1}{2} \int_{-1}^{4} u^5 du$

5. The position of a particle satisfies the equation $\frac{dx}{dt} = \frac{1}{\sqrt{2t+1}}$, for $t \ge 0$ with the initial condition x(0) = 4. Find x(12).

6. Let *R* be the region in the first quadrant under the graph $y = \frac{x}{x^2 + 2}$ for $0 \le x \le \sqrt{6}$. Find the area of *R*.

7. $\int (x-1)\cos(x^2-2x)\,dx =$