\qquad
Period \qquad

Calculus BC - Chapter I Sample Test (calculators allowed)

Show all work for free-response questions.

1. Let f be a differentiable function such that $\int f(x) \sin x d x=-f(x) \cos x+\int 4 x^{3} \cos x d x$. Which of the following could be $f(x)$?
(A) $\cos x$
(B) $\sin x$
(C) $4 x^{3}$
(D) $-x^{4}$
(E) x^{4}
2. If $\int_{0}^{k} \frac{x}{x^{2}+4} d x=\frac{1}{2} \ln 4$, where $k>0$, then $k=$
(A) 0
(B) $\sqrt{2}$
(C) 2
(D) $\sqrt{12}$
(E) $\frac{1}{2} \tan (\ln \sqrt{2})$
3. A particle moves along the y-axis so that its velocity at any time $t \geq 0$ is given by $v(t)=t \cos t$. At time $t=0$, the position of the particle is $y=3$. Write an expression for the position $y(t)$ of the particle.
4. A particle moves along the x-axis so that its velocity at any time $t \geq 0$ is given by $v(t)=-(t+1) \sin \left(\frac{t^{2}}{2}\right)$. It is known that its initial position is $x(0)=7$.
a. Is the particle moving to the left or to the right at time $t=2$? Justify your answer.
b. Is the velocity of the particle increasing or decreasing at time $t=2$? Justify your answer.
c. Is the speed of the particle increasing or decreasing at time $t=2$? Justify your answer.
d. Find the times at which the particle changes directions on the interval $0 \leq t \leq 4$. Justify your answer.
e. Find all times on the interval $0 \leq t \leq 4$ where the speed is equal to 3 .
f. Find x (4).
g. Find the distance traveled by the particle on the interval $0 \leq t \leq 4$.
\qquad
Period \qquad

Calculus BC - Chapter I Sample Test (no calculators)

Show all work for free-response questions.

1. $\int_{0}^{\frac{\pi}{4}} e^{\tan x} \sec ^{2} x d x=$
(A) 0
(B) 1
(C) $e-1$
(D) e
(E) $e+1$
2. $\int x^{7} \ln x d x=$
(A) $x^{8} \ln x-\frac{1}{8} x^{8}+C$
(B) $\frac{1}{64} x^{8} \ln x-\frac{1}{64} x^{8}+C$
(C) $\frac{1}{8} x^{7}+\frac{1}{x}+C$
(D) $\frac{1}{8} x^{8} \ln x-\frac{1}{64} x^{8}+C$
3. $\int_{0}^{1} x \sqrt{1+8 x^{2}} d x=$
(A) $\frac{1}{24}$
(B) $\frac{13}{12}$
(C) $\frac{9}{8}$
(D) $\frac{52}{3}$
(E) 18
4. Using the substitution $u=x^{2}-3, \int_{-1}^{4} x\left(x^{2}-3\right)^{5} d x$ is equal to which of the following?
(A) $2 \int_{-2}^{13} u^{5} d u$
(B) $\int_{-2}^{13} u^{5} d u$
(C) $\frac{1}{2} \int_{-2}^{13} u^{5} d u$
(D) $\int_{-1}^{4} u^{5} d u$
(E) $\frac{1}{2} \int_{-1}^{4} u^{5} d u$
5. The position of a particle satisfies the equation $\frac{d x}{d t}=\frac{1}{\sqrt{2 t+1}}$, for $t \geq 0$ with the initial condition $x(0)=4$. Find $x(12)$.
6. Let R be the region in the first quadrant under the graph $y=\frac{x}{x^{2}+2}$ for $0 \leq x \leq \sqrt{6}$. Find the area of R.
7. $\int(x-1) \cos \left(x^{2}-2 x\right) d x=$
