\qquad
Period \qquad

Calculus BC- Chapter 9 Sample Test (no calculators)

Show all work for free-response questions.

1. Which of the following series converge conditionally?
I. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n}$
II. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
III. $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2}}$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
2. A function f has Maclaurin series given by $\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\frac{x^{6}}{4!}+\cdots+\frac{x^{n+2}}{n!}+\cdots$. Which of the following is an expression for $f(x)$?
(A) $-3 x \sin x+3 x^{2}$
(B) $-\cos \left(x^{2}\right)+1$
(C) $-x^{2} \cos x+x^{2}$
(D) $x^{2} e^{x}-x^{3}-x^{2}$
(E) $e^{x^{2}}-x^{2}-1$
3. What are all values of p for which the infinite series $\sum_{n=1}^{\infty} \frac{n}{n^{p}+1}$ converges?
(A) $p>0$
(B) $p \geq 1$
(C) $p>1$
(D) $p \geq 2$
(E) $p>2$
4. Suppose $\lim _{n \rightarrow \infty} a_{n}=\infty$ and $a_{n+1} \geq a_{n}>0$ for all $n \geq 1$. Which of the following must be true?
(A) $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ diverges
(B) $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges
(C) $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ converges
(D) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{a_{n}}$ converges
5. Which of the following series converges for all real numbers x ?
(A) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
(B) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$
(C) $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$
(D) $\sum_{n=1}^{\infty} \frac{e^{n} x^{n}}{n!}$
(E) $\sum_{n=1}^{\infty} \frac{n!x^{n}}{e^{n}}$
6. Which of the following statements about $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{2}+1}$ is true?
(A) The series can be shown to diverge by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
(B) The series can be shown to diverge by limit comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
(C) The series can be shown to converge by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
(D) The series can be shown to converge by the Alternating Series Test
7. What is the sum of the series $1+\ln 2+\frac{(\ln 2)^{2}}{2!}+\cdots+\frac{(\ln 2)^{n}}{n!}+\cdots$?
(A) $\ln 2$
(B) $\ln (1+\ln 2)$
(C) 2
(D) e^{2}
(E) The series diverges

Calculus BC- Chapter 9 Sample Test (no calculators)

8. The sum of the infinite geometric series $\frac{3}{2}+\frac{9}{16}+\frac{27}{128}+\frac{81}{1,024}+\cdots$ is
(A) 1.60
(B) 2.35
(C) 2.40
(D) 2.45
(E) 2.50
9. Let f be the function given by $f(x)=\ln (3-x)$. The third-degree Taylor polynomial for f about $x=2$ is
(A) $-(x-2)+\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{3}$
(B) $-(x-2)-\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{3}$
(C) $(x-2)+(x-2)^{2}+(x-2)^{3}$
(D) $(x-2)+\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}$
(E) $(x-2)-\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}$
10. If f is a function such that $f^{\prime}(x)=e^{x^{3}}$, find the coefficient of x^{7} in the Maclaruin series for $f(x)$.
11. The Maclaurin series for the function f is given by $f(x)=\sum_{n=2}^{\infty} \frac{(-1)^{n}(2 x)^{n}}{n-1}$ on its interval of convergence. Find the interval of convergence for the Maclaurin series of f. Justify your answer.
12. The function f is defined by the power series

$$
f(x)=1+(x+1)+(x+1)^{2}+\cdots+(x+1)^{n}+\cdots=\sum_{n=0}^{\infty}(x+1)^{n}
$$

for all real numbers x for which the series converges.
a) Find the interval of convergence of the power series for f. Justify your answer.
b) The power series above is the Taylor series for f about $x=-1$. Find the sum of the series for f.
c) Let h be the function defined by $h(x)=f\left(x^{2}-1\right)$. Find the first three nonzero terms and the general term of the Taylor series for h about $x=0$, and find the value of $h\left(\frac{1}{2}\right)$.

Calculus BC- Chapter 9 Sample Test (no calculators)

$$
f(x)=\left\{\begin{array}{c}
\frac{\cos x-1}{x^{2}} \text { for } x \neq 0 \\
-\frac{1}{2} \text { for } x=0
\end{array}\right.
$$

13. The function f, defined above, has derivatives of all orders. Let g be the function defined by $g(x)=1+\int_{0}^{x} f(t) d t$.
a) Write the first three nonzero terms and the general term of the Taylor series for $\cos x$ about $x=0$. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about $x=0$.
b) Use the Taylor series for f about $x=0$ found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at $x=0$. Give a reason for your answer.
c) Write the fifth-degree Taylor polynomial for g about $x=0$.
d) The Taylor series for g about $x=0$, evaluated at $x=1$, is an alternating series with individual terms that decrease in absolute value to 0 . Use the third-degree Taylor polynomial for g about $x=0$ to estimate the value of $g(1)$. Explain why this estimate differs from the actual value of $g(1)$ by less than $\frac{1}{6!}$
14. Let $f(x)=\ln \left(1+x^{3}\right)$.
a) The Maclaurin series for $\ln (1+x)$ is $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+\cdots$. Use the series to write the first four nonzero terms and the general term of the Maclaurin series for f.
b) The radius of convergence of the Maclaurin series for f is 1 . Determine the interval of convergence. Show the work that leads to your answer.
c) Write the first four nonzero terms of the Maclaurin series for $f^{\prime}\left(t^{2}\right)$. If $g(x)=\int_{0}^{x} f^{\prime}\left(t^{2}\right) d t$, use the first two nonzero terms of the Maclaurin series for g to approximate $g(1)$.
d) The Maclaurin series for g, evaluated at $x=1$, is a convergent alternating series with individual terms that decrease in absolute value to 0 . Show that your approximation in (c) must differ from $g(1)$ by less than $\frac{1}{5}$.
