\qquad
Period \qquad

Calculus BC - Chapter 6 Sample Test (calculators allowed)

Show all work for free-response questions.

1. Let R be the region enclosed by the graph of $y=1+\ln \left(\cos ^{4} x\right)$, the x-axis, and the vertical lines $x=-\frac{2}{3}$ and $x=\frac{2}{3}$. The closest integer approximation of the area of R is
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
2. The base of a solid S is the region enclosed by the graph of $y=\sqrt{\ln x}$, the vertical line $x=e$, and the x-axis. If the cross sections of S perpendicular to the x-axis are squares, then the volume of S is
(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) 1
(D) 2
(E) $\frac{1}{3}\left(e^{3}-1\right)$
3. Let R be the region enclosed by the graphs of $y=e^{x}, y=(x-1)^{2}$, and the vertical line $x=1$.
a) Find the volume of the solid generated when R is revolved about the x-axis.
b) The base of a solid is the region R. Each cross section of the solid perpendicular to the x-axis is a semicircle. Write an expression involving one or more integrals that gives the volume of the solid. Do not evaluate.

4. Let R be the region bounded by the graphs of $y=e^{x}$ and $y=-x^{2}+1$.
a) Find the area of R.
b) Write an expression involving one or more integrals that gives the length of the boundary of the region R. Do not evaluate.

5. Let R be the region bounded by the y-axis and the graphs of $y=\frac{x^{3}}{1+x^{2}}$ and $y=4-2 x$, as shown in the figure above.
a) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.
b) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when region R is revolved about the horizontal line $y=-1$.

Name \qquad
Period \qquad

Calculus BC - Chapter 6 Sample Test (no calculators)

Show all work for free-response questions.

1. The area of the region enclosed by the graph of $y=x^{2}+1$ and the horizontal line $y=5$ is
(A) $\frac{14}{3}$
(B) $\frac{16}{3}$
(C) $\frac{28}{3}$
(D) $\frac{32}{3}$
(E) 8π
2. Find the area of the region bounded by $y=e^{x}, y=e^{-x}$, and the vertical line $x=1$.
(A) $e+\frac{1}{e}-2$
(B) $e-\frac{1}{e}$
(C) $e+\frac{1}{e}$
(D) $2 e-2$
3. Find the average value of $f(x)=1-\frac{1}{1+x^{2}}+\sqrt{1-x^{2}}$ from $x=-1$ to $x=1$.
4. On a certain day, the temperature, in degrees Fahrenheit, in a small town t hours after midnight $(t=0)$ is modeled by the function $g(t)=50-8 \sin \left(\frac{\pi t}{12}\right)$. What is the average temperature of the town between $3 \mathrm{am}(t=3)$ and $6 \mathrm{am}(t=6)$, in degrees Fahrenheit?
