Warm up Problem

The points $(x, 0),(-x, 0),\left(x, \sqrt{25-x^{2}}\right)$, and $\left(-x, \sqrt{25-x^{2}}\right)$ are the vertices of a rectangle, for $x \leq 5$.
For what value of x is the rectangle's area maximum?

Miscellaneous Theorems

Thm. Extreme Value Theorem
Let $f(x)$ be continuous on the interval $[a, b]$. There exists a point c on $[a, b]$ such that $f(c) \geq f(x)$ for all x on the interval.

Let $f(x)$ be continuous on the interval $[a, b]$. There exists a point c on $[a, b]$ such that $f(c) \leq f(x)$ for all x on the interval.

There is an absolute max. and an absolute min . on the interval.

Thm. Intermediate Value Theorem

Let $f(x)$ be continyous on the interval $[a, b]$. If k is any number bet veen $f(a)$ and $f(b)$, then there is a point c on $[a, b]$ such that $f(c)=k$.

Every y-coordinate between the endpoints is included

Ex. Show that $f(x)=x^{5}-3 x^{2}+1$ has a point such a zero on the interval $[-1,2]$.

$$
\begin{array}{ll}
f(-1)=-1-3+1=-3 & f(-1)<10 \text { and } f(2)>10 \\
f(2)=32-12+1=21 & \therefore f(x)=10 \text { by IVT } \\
& \text { because } f(x) \text { is cont. }
\end{array}
$$

Chm. Mean Value Theorem
If $f(x)$ is continuous on the interval $[a, b]$ and differentiable on the interval (a, b), then there is some point c on the interval such that

Ex. Let $f(x)=x^{2}+2 x-1$. Find c on the interval $[-1,2]$ that satisfies MVT.

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f(2)-f(-1)}{2-(-1)} \\
2 c+2 & =\frac{7-(-2)}{3} \\
2 c+2 & =3 \\
2 c & =1 \\
c & =\frac{1}{2}
\end{aligned} \quad \begin{aligned}
f(2)=4+4-1=7 \\
f(-1)=1-2-1=-2
\end{aligned}
$$

Summary

Given two points on a graph of f :
There is one value that f^{\prime} must attain
$>$ Slope between the endpoints
$>$ Guaranteed by MVT $\rightarrow f$ must be cont. and diff.
There are many values that f must attain
$>$ All the y 's between the endpoints
$>$ Guaranteed by IVT $\rightarrow f$ must be continuous

Ex. Let f be a twice-differentiable function such that $f(0)=-13$ and $f(7)=15$. Must there exist a value of c, for $0<c<7$, such that $f(c)=0$? Justify your answer.
f twice diff. implies f is cont.
$f(0)<0$ and $f(7)>0$, therefore $f(c)=0$ on interval by IVT.

- You need to state that f is continuous to use IVT
- You need to state how you know that f is continuous
- "Differentiability implies continuity"
- You need to state that the desired value is between the two given values

Theorems Circuit

Beginning in the first cell marked \#1, find the requested information. To advance in the circuit, hunt for your answer and mark that cell \#2. Continue working in this manner until you complete the circuit.

Unit 4 Progress Check: MCQ

- Do \#11-13, 16-18

Unit 5 Progress Check: MCQ Part A

- Do them all

Unit 5 Progress Check: MCQ Part B

- Do them all

Unit 5 Progress Check: MCQ Part C

- Do \#1-5

