Warm up Problems

$$
\begin{aligned}
& \text { 1. } \int x^{2}\left(2 x^{3}-5\right)^{5} d x \\
& \text { 2. } \int e^{-5 x} d x \\
& \text { 3. } \int \frac{\sqrt{\ln x}}{x} d x
\end{aligned}
$$

More Substitution

$$
\begin{aligned}
& \text { Ex. } \int \tan x d x=\int \frac{\sin x}{\cos x} d x=\int \frac{1}{\cos x} \sin x d x \\
& =\int \frac{1}{u}(-1) d u=-\ln \ln \left\lvert\,+c \quad \begin{array}{c}
u=\cos x \\
d u=-\sin x d x \\
-\operatorname{du}=\sin x d x
\end{array}\right. \\
& =-\ln |\cos x|+C \\
& \\
& =\ln |\cos x|^{-1}+C
\end{aligned}
$$

Ex. $\int \frac{x}{x+3} d x=\int \frac{u-3}{u} d u$

$$
\begin{aligned}
&=\int \frac{u}{u}-\frac{3}{u} d u \\
& d u=x+3 \\
& \rightarrow u-3=x
\end{aligned}=\int\left(1-\frac{3}{u}\right) d u \quad \begin{aligned}
& =u-3 \ln |u|+c \\
& =x+3-3 \ln |x+3|+C \\
& =x-3 \ln |x+3|+c
\end{aligned}
$$

In a definite integral, you should find the antiderivative using substitution, change back to x, and then plug in endpoints.

$$
\begin{aligned}
& \text { Ex. } \int_{0}^{2} x e^{x^{2}} d x \\
& =\begin{array}{c}
u=x^{2} \\
d * \\
=\int_{0}^{*}
\end{array}=\int_{0}^{2} e^{u} \frac{1}{2} d u \\
& =\frac{1}{2} \frac{1}{2} d u \quad \begin{array}{l}
\frac{1}{2} d u=x d x
\end{array} \\
& =\left.\frac{1}{2} e^{u}\right|_{0} ^{2} \\
& =\frac{1}{2} e_{4}^{4}=\left.\frac{1}{2} e^{x^{2}}\right|_{0} ^{2} \frac{1}{2} e^{0}
\end{aligned}
$$

$$
=\frac{1}{4}\left(\operatorname{ta} \frac{\pi}{4}\right)^{4}-\frac{1}{4}(\tan 0)^{4}=\frac{1}{4}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { Ex. } \int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta & \theta=+1 / 4 \rightarrow u=1 \\
u=\tan \theta & \theta \rightarrow u=0
\end{array} \\
& =\int_{*}^{* *} u^{3} d u \quad \begin{array}{l}
u=\tan \theta \\
d u=\sec ^{2} \theta d \theta
\end{array}=\int_{0}^{1} u^{3} d u \\
& =\left.\frac{1}{4} u^{4}\right|_{\pi} ^{4 *} \\
& =\left.\frac{1}{4} \tan ^{4} \theta\right|_{0} ^{\pi / 4} \\
& =\left.\frac{1}{4} u^{4}\right|_{0} ^{1}
\end{aligned}
$$

Pact. $\int_{1}^{3} \frac{1}{5-x} d x$

$$
\begin{aligned}
& x=3 \rightarrow u=2 \\
& x=1 \rightarrow u=4
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{*}^{* *} \frac{1}{u}(-1) d u \quad \begin{array}{c}
u=5-x \\
d u=-d x \\
-d u=d x
\end{array} \\
& =-\left.\ln |u|\right|_{*} ^{* *} \\
& =-\left.\ln |5-x|\right|_{1} ^{3} \\
& =-\ln (2)+\ln (4)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{4}^{2} \frac{1}{u}(-1) d u \\
& =-\left.\ln |u|\right|_{4} ^{2} \\
& =-\ln 2-(-\ln 4)
\end{aligned}
$$

We could have changed the endpoints to $u \ldots$

