## Warm up Problems

Let $f(x)=x^{3}-3 x+1$.

1) Find and classify all critical points.
2) Find all inflection points.

Graph of a Function, Part 2


## Second Derivative Test

If $p$ is a critical point of $f(x)$ and $f^{\prime \prime}(p)<0$, then $p$ is a local maximum.

If $p$ is a critical point of $f(x)$ and $f^{\prime \prime}(p)>0$, then $p$ is a local minimum.

Ex. Find and classify all critical points of

$$
\begin{aligned}
f(x) & =x^{3}-5 x^{2}+3 x-1 . & & f^{\prime \prime}(x)=6 x-10 \\
f^{\prime}(x)=3 x^{2}-10 x+3 & & (3 x-1)(x-3)=0 & f^{\prime \prime}\left(\frac{1}{3}\right)=-8 \leftarrow 10 \text { cal max } \\
& x=\frac{1}{3} \quad x=3 & & f^{\prime \prime}(3)=8 \leftarrow 10 \text { cal min. }
\end{aligned}
$$

Def. The absolute maximum (global max) value of a function on an interval is the largest value that the function attains.

Def. The absolute minimum (global min) value of a function on an interval is the smallest value that the function attains.


Thm. The absolute max. and min. will occur at one of the following:

- the point $p$ where $f^{\prime}(p)=0 \quad$ critical
- the point $p$ where $f^{\prime}(p)$ is undef. $\int$ points
- an endpoint of the interval

Ex. Find the absolute max. and min. values of $f(x)=x^{3}-3 x^{2}+1$ on $\left[-\frac{1}{2}, 4\right]$.

$$
\begin{aligned}
f^{\prime}(x)= & 3 x^{2}-6 x \\
= & 3 x(x-2)=0 \\
& x=0 \quad x=2
\end{aligned}
$$

$$
\begin{aligned}
& f\left(-\frac{1}{2}\right)=.125 \\
& f(0)=1 \\
& f(2)=-3 \\
& f(4)=17
\end{aligned}
$$



Ex. Find the $x$-coordinate of all local max. $/ \mathrm{min}$. and absolute max. $/ \mathrm{min}$. of $f(x)=x^{2}$ for $-2<x<0$ by graphing.


$$
\begin{aligned}
& \text { local max } \rightarrow \text { none } \\
& \text { local min. } \rightarrow \text { none } \\
& \text { abs. max. } \rightarrow x=-2 \text { none } \\
& \text { abs. min. } \rightarrow x=0 \text { none }
\end{aligned}
$$

$\rightarrow$ What about open intervals?

Ex. Find the $x$-coordinate of the absolute maximum of $g(x)$. Justify your answer.


Ex. Find the $x$-coordinate of the absolute minimum of $f(x)$ on $[0,5]$. Justify your


$$
f(0)=9
$$

$$
\begin{aligned}
& x=0: f^{\prime} \text { neg. after } \\
& x=1: f(1)=4 \\
& x=2: 10 c_{\text {a }} l_{\text {max. ( }}\left(f^{\prime}\right. \text { goop pos. } \\
& \text { to neg) } \\
& x=5: f(5)=-11 \\
& f(1)=f(0)+\int_{0}^{1} f^{\prime}(x) d x \\
&=9+(-5)=4 \\
& f(s)=f(0)+\int_{0}^{5} f^{\prime}(x) d x
\end{aligned}
$$

$$
=9+(-5+2-17)=-11
$$

