

## More Power Series

We can take the derivative and integral of the power series term by term
$\rightarrow$ The radius of convergence won't change, though the endpoints of the interval might

Ex. For the function $f(x)=\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$, find $f^{\prime}(x)$.
What is its interval of convergence?

$$
f^{\prime}(x)=\sum_{n=1}^{\infty}(x-3)^{n-1}
$$

geom. series

$$
r=x-3
$$

cons. for $|x-3|<1$


$$
(2,4)
$$

Over the next two lessons, we'll be given a function and want to find a power series representation.

- This means a power series whose values are the same as the function
- As we go along, we'll also address the question of why it's helpful to find a power series representation

Recall the geometric series:

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

We can use this to write some function as a power series.

$$
f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

So $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots$ as long as $|x|<1$.

Ex.

$$
\begin{aligned}
f(x) & =\frac{1}{1+x} \\
& =\frac{1}{1-(-x)} \\
& =\sum_{n=0}^{\infty}(-x)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{n}
\end{aligned}
$$

Ex. $f(x)=\frac{1}{1-x^{2}}$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}\left(x^{2}\right)^{n} \\
& =\sum_{n=0}^{\infty} x^{2 n}
\end{aligned}
$$

Ex. $f(x)=\frac{x^{3}}{1-x}$

$$
\begin{aligned}
& =x^{3} \frac{1}{1-x} \\
& =x^{3} \sum_{n=0}^{\infty} x^{n} \\
& =\sum_{n=0}^{\infty} x^{3} x^{n} \\
& =\sum_{n=0}^{\infty} x^{n+3}
\end{aligned}
$$

Ex. $f(x)=\frac{1}{5-x}$

$$
=\frac{1}{5\left(1-\frac{x}{5}\right)}=\frac{1}{5} \frac{1}{1-\frac{x}{5}} \quad\left|\frac{x}{5}\right|<1
$$

Show the first $\left.\frac{1}{4} \sum_{n=0}^{\infty}\left(\frac{x}{z}\right)^{n}\right)^{n}=\sum_{\text {terms }}^{\infty} \frac{1}{\operatorname{anc}} \frac{x^{n}}{d 5 \text { F he }} \quad|x|<5$ term. Find the interval of convergence.

$$
=\sum_{n=0}^{\infty} \frac{1}{5^{n+1}} x^{n}=\frac{1}{5}+\frac{1}{25} x+\frac{1}{125} x^{2}+\frac{1}{625} x^{3}+\ldots
$$

Ex. $f(x)=\tan ^{-1} x$

$$
\begin{aligned}
& =\int \frac{1}{1+x^{2}} d x=\int \frac{1}{1-\left(-x^{2}\right)} d x \\
& =\int \sum_{n=0}^{\infty}\left(-x^{2}\right)^{n} d x=\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}
\end{aligned}
$$

Ex. $f(x)=\ln x$

$$
\begin{aligned}
& =\int \frac{1}{x} d x=\int \frac{1}{1-(1-x)} d x \quad(0,2) \\
& =\int \sum_{n=0}^{\infty}(1-x)^{n} d x=\int \sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}(x-1)^{n+1}
\end{aligned}
$$

Ex. Find a function for the power series and give the interval of convergence.

$$
\begin{aligned}
\sum_{n=0}^{\infty}(2 x)^{n} & =\frac{1}{1-2 x} \\
|2 x| & <1 \\
|x| & <\frac{1}{2}
\end{aligned}
$$



$$
\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

Ex. Find a function for the power series and give the interval of convergence.

$$
\begin{gathered}
\sum_{n=0}^{\infty} 4(x-1)^{n}=\frac{4}{1-(x-1)}=\frac{4}{2-x} \\
|x-1|<1 \\
<\underset{0}{(0,2)} 2
\end{gathered}
$$

Ex. Find a function for the power series and give the intervat of convergence.

$$
\sum_{n=1}^{\infty}\left(x^{2}\right)^{n}=\frac{x^{2}}{1-x^{2}}
$$

