Power Series

A power series is an infinite degree polynomial.

$$
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

We can generalize by centering the power series at $x=c$.

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\cdots
$$

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\cdots \\
\sum_{n=0}^{\infty}(-1)^{n}(x+1)^{n}=1-(x+1)+(x+1)^{2}-(x+1)^{3}+\cdots \\
\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n}=(x-2)+\frac{1}{2}(x-2)^{2}+\frac{1}{3}(x-2)^{3}+\cdots
\end{gathered}
$$

These are functions of x.
There may be no simpler way to express these functions.

A power series is convergent at a value of x if the infinite sum converges to a finite number when evaluated at x.

The interval of convergence is the interval of x values that make the series converge. The radius of convergence is the distance away from $x=c$ that we can go to get convergence.

Special Cases
Radius $=\infty \rightarrow$ Interval $=$ all reals
Radius $=0 \rightarrow$ Interval $=$ just the point c

Ex. Find the radius of convergence for $\sum_{n=0}^{\infty} 3(x-5)^{n}$

$$
\lim _{n \rightarrow \infty}\left|\frac{\beta(x-5)^{n+1}}{\beta(x-5)^{n}}\right|=|x-5|<1
$$

$$
r=1
$$

Ex. Find the radius of convergence for $\sum_{n=0}^{\infty} n!x^{n}$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{\left.f^{n+1}+1\right)!x^{x+1}}{x!x^{n}}\right|=\lim _{n \rightarrow \infty}|(n+1) \times|=\infty \nless 1 \\
R=0
\end{gathered}
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=0<1 \text { for any } x \\
R=\infty
\end{gathered}
$$

Ex. Find the interval of convergence and radius of convergence for

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n} \\
& \lim _{n \rightarrow \infty}\left|\frac{(x-3)^{n+1}}{n+1} \cdot \frac{n}{(x-3)^{n}}\right|=\lim _{n \rightarrow \infty}\left|(x-3) \frac{n}{n+1}\right|=|x-3|<1 \\
& \underline{x=2}: \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \text { canc. by alt. harm. series } \mid \\
& \sum_{n=1}^{\infty} \frac{1^{n}}{n}=\sum_{n=1}^{\infty} \frac{1}{n} \text { dir. by harm. series } \left\lvert\, \begin{array}{l}
3 \\
2 \\
\operatorname{Rad} .=1
\end{array}\right.
\end{aligned}
$$

Ex. Find the interval of convergence and radius of convergence for

$$
\begin{aligned}
& \left.\sum_{n=0}^{\infty} \frac{(-1)^{n}(x+1)^{n}}{2^{n}}=\sum_{n=0}^{\infty}\left(\frac{(-1)(x+1)}{2}\right)^{n} \quad r=\frac{-(x+1)}{2} \quad \right\rvert\, \begin{array}{l}
\left.\frac{-(x+1)}{2} \right\rvert\,<1 \\
|x+1|<2
\end{array} \\
& \lim _{n \rightarrow \infty}\left|\frac{(x+1)^{n+1}}{x^{n+1}} \cdot \frac{2^{x}}{(x+1)^{n}}\right|=\left|\frac{x+1}{2}\right|<1 \rightarrow|x+1|<2 \\
& \underset{\langle-3-1}{r=2} \rightarrow \underset{-3}{\left.x=3: \sum \frac{(-1)^{n}(-2)^{n}}{2^{n}}=\sum\left(\frac{(-1)(-2)^{n}}{2}\right)^{n}=\sum 1\right)} \\
& \text { div. by Test for } \\
& \text { int: }(-3,1) \\
& x=1: \sum \frac{(-1)^{n}(2)^{n}}{2^{n}}=\sum(-1)^{n} \text { Div.g }
\end{aligned}
$$

Does this series look like something we know?

T -shirt design ideas are due next class.

