Integral Test

So far, the Test for Divergence tells us if a series diverges and the Geometric Series Test tells us about the convergence of those series.
\rightarrow Over the next few lessons, we will learn several more ways to determine the convergence of a series.
\rightarrow When citing the name of a test as justification, abbreviate at your own risk

Thm. Integral Test

Let f be a positive, decreasing, continuous function for $x \geq 1$ such that $f(n)=a_{n}$. Then

$$
\sum_{n=1}^{\infty} a_{n} \text { and } \int_{1}^{\infty} f(x) d x
$$

either both converge or both diverge.

$$
\begin{gathered}
\text { Ex. } \sum_{n=1}^{\infty} \frac{n}{n^{2}+1}
\end{gathered}\left\{\begin{array}{ll}
f(x)=\frac{x}{x^{2}+1} & \text { pos. } \\
f^{\prime}(x)=\frac{\left(x^{2}+1 \cdot 1 \cdot x \cdot 2 x\right.}{\left(x^{2}+1\right)^{2}} & \text { cont. } \\
\text { dec. } \checkmark
\end{array}\right] \begin{aligned}
& =\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}<0
\end{aligned}
$$

$\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ div. by Integral Test.
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots$ is called a p-series.
$\sum_{n=1}^{\infty} \frac{1}{n}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots$ is called the harmonic series.
Thm. p-Series Test
The p-series converges if $p>1$ and diverges if $p \leq 1$.

Ex. Determine the convergence of
a) $\sum_{n=1}^{\infty} \frac{1}{n^{3}} \quad$ conc. b. p-series test, $p=3$
b) $\sum_{n=1}^{\infty} \frac{1}{n}$ div. by harm. series
c) $1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}+\frac{1}{4 \sqrt{4}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$

Ex. Determine the convergence of
a) $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x \quad \sum \frac{1}{\sqrt{n}}$ div.
b) $\int_{1}^{\infty} \frac{1}{x} d x \quad \sum \frac{1}{n}$ div.
c) $\int_{1}^{\infty} \frac{1}{x^{3}} d x \quad \sum \frac{1}{n^{3}} \operatorname{conv}$.

Comparison Tests

Thm. Limit Comparison Test
Consider $a_{n}>0$ and $b_{n}>0$, and suppose there is a finite positive L such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$

Then $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.

$$
\begin{aligned}
& \text { EX. } \sum_{n=1}^{\infty} \frac{1}{2+\sqrt{n}} \xrightarrow{\text { compare }} \sum \frac{1}{\sqrt{n}} \\
& \lim _{n \rightarrow \infty} \frac{\frac{1}{2+\sqrt{n}}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{2+\sqrt{n}}=1
\end{aligned}
$$

$\sum \frac{1}{\sqrt{n}}$ div. by p-series test, $p=\frac{1}{2}$
$\therefore \sum \frac{1}{2+\sqrt{n}}$ div. by Limit comp. Test

$$
\begin{aligned}
& \text { Ex. } \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1} \xrightarrow{\sum} \frac{\sqrt{n}}{n^{2}}=\sum \frac{1}{n^{3 / 2}} \\
& \lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n}}{n^{2}+1}}{\frac{1}{n^{1 / 2}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n^{2}+1} \cdot \frac{n^{3 / 2}}{1}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1
\end{aligned}
$$

$\sum \frac{1}{n^{n / 2}}$ con. by p-series test, $p=\frac{3}{2}$
$\therefore \sum \frac{\sqrt{n}}{n^{2}+1}$ conc. by Limit comp. Test

$$
\begin{aligned}
& \text { Ex. } \sum_{n=1}^{\infty} \frac{\sqrt{n}}{3 n^{2}-4 n+5} \longrightarrow \sum \frac{\sqrt{n}}{n^{2}}=\sum \frac{1}{n^{3 / 2}} \\
& \lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n}}{3 n^{2}-4 n+5}}{\frac{1}{n^{1 / 2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{3 n^{2}-4 n+5}=\frac{1}{3}
\end{aligned}
$$

$\therefore \sum \frac{1}{n^{3 / 2}}$ conc. by p-series test, $p=\frac{3}{2}$
$\therefore \sum \frac{\sqrt{n}}{3 n^{2}-4_{n}+5}$ cons. by limit comp. test.

Ex. $\sum_{n=1}^{\infty} \frac{1}{1+2^{n}} \longrightarrow \sum \frac{1}{2^{n}}$

$$
\lim _{n \rightarrow \infty} \frac{1}{\frac{1+2^{n}}{\frac{1}{2^{n}}}}=\lim _{n \rightarrow \infty} \frac{2^{n}}{1+2^{n}}=1
$$

$\sum \frac{1}{2^{n}}$ conn. by Geom. Series Test, $r=\frac{1}{2}$ $\therefore \sum \frac{1}{1+2^{n}}$ conc. by Limit Comp. Test

Thm. Direct Comparison Test

Let $0<a_{n} \leq b_{n}$ after some value of n.
i) If $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
ii) If $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.

Informally:

1. If the "larger" series converges, then the "smaller" series must also converge.
2. If the "smaller" series diverges, then the "larger" series must also diverge.

$$
\begin{aligned}
& \text { Ex. } \sum_{n=1}^{\infty} \frac{|\cos n|}{n^{2}} \longrightarrow \sum \frac{1}{n^{2}} \\
& \frac{|\cos n|}{n^{2}} \leq \frac{1}{n^{2}} \\
& |\operatorname{con}| \stackrel{?}{\leq} 1 \text { yes }
\end{aligned}
$$

$\sum \frac{1}{n^{2}}$ conc. by p-serics test, $p=2$
$\therefore \sum \frac{\left|w^{2}\right|}{n^{2} \mid}$ cone. by Direct comp. Test

Pract. Determine the convergence, and state the test used

1. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
Div., Integral Test
2. $\sum^{\infty} \frac{4}{2 n}$ Conv., Limit Comp. and Geom. Series Tests
Div., Limit Comp. and p-Series Tests
