Taylor and Maclaurin Series

Last class, we found the power series for some specific forms of functions. Today we'll find the power series for any function $f(x)$.

Thm. If f has a power series representation centered at a, meaning that f can be written $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ then the coefficients will be $c_{n}=\frac{f^{(n)}(a)}{n!}$

$$
\begin{gathered}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)^{1}+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots
\end{gathered}
$$

This is called the Taylor series representation of $f(x)$ centered at $x=a$.
When $a=0$, we call it the Maclaurin series.

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x^{1}+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

Ex. Find the first 4 nonzero terms of the Taylor series for $f(x)=\ln x$ centered at $x=1$, then write the series in

$$
\begin{aligned}
& f(x)=\ln x \rightarrow f(1)=0 \\
& f^{\prime}(x)=\frac{1}{x}=x^{-1} \rightarrow f^{\prime}(1)=1 \\
& f^{\prime \prime}(x)=-x^{-2} \rightarrow f^{\prime \prime}(1)=-1 \\
& f^{\prime \prime \prime}(x)=2 x^{-3} \rightarrow f^{\prime \prime \prime}(1)=2 \\
& f^{\prime(4)}(x)=-6 x^{-4} \rightarrow \sum_{n=1}^{\infty} \frac{(x-1))^{(4)}(1)=-6}{n}(x-1)^{n} \\
& \begin{array}{l}
f(x)=2 \\
f(1)+\frac{f^{\prime}(1)}{1!}(x-1)^{\prime}+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3}+\frac{f^{(4)}(1)}{4!}(x-1)^{4}+. \\
\\
\end{array}=0+\frac{1}{1}(x-1)^{\prime}-\frac{1}{2}(x-1)^{2}+\frac{2}{6}(x-1)^{3}+\frac{-6}{24}(x-1)^{4}+\ldots
\end{aligned}
$$

Ex. Find the first 4 nonzero terms of the Maclaurin series

$$
\begin{array}{ll}
f^{(6)}(x)=-\infty & \\
f^{(7)}(x)=-\cos x & f^{(7)}(0)=-1
\end{array}
$$

$$
\begin{aligned}
& \text { for } f(x)=\sin x \text {, then write the series in sigma notation. } \\
& \begin{array}{l}
\text { for } f(x)=\sin x \text {, then write the series in sigma notation. } \\
\begin{array}{ll}
f(x)=\sin x & f(0)=0 \\
f^{\prime}(x)=\cos x & f^{\prime}(0)=1
\end{array} \left\lvert\, f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x^{1}+\frac{f^{\prime \prime}(c)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{\left.f^{(4)} / 0\right)}{4!} x^{4}\right. \\
\\
+\frac{f^{(5)}(0)}{5!} x^{5}+\frac{f^{(6)}}{6!} x^{6}+\frac{f^{(7)}}{7!} x^{7}+\ldots .
\end{array} \\
& f^{\prime}(x)=\cos x \quad f^{\prime}(0)=1 \\
& f^{\prime \prime}(x)=\sin x \quad f^{\prime \prime}(0)=0 \\
& f^{\prime \prime \prime}(x)=-\cos x \quad f^{\prime \prime \prime}(0)=-1 \\
& f^{(4)}(x)=\sin x \quad f^{(4)}(0)=0 \\
& f^{|s|}(x)=\cos x \quad f^{(s)}(0)=1 \\
& f^{(6)}(x)=-\sin x \quad f^{(6)}(0)=0 \\
& +\frac{f^{(5)}(\sigma)}{s!} x^{5}+\frac{f^{(6)}}{6!} x^{6}+\frac{f^{(7)}}{7!} x^{7}+\ldots \\
& =\prod_{n=0}^{1!} x^{1}+\frac{-1}{3!} x^{3}+\underset{n=1}{\frac{1}{5!}} x^{5}+\frac{-1}{7!} x^{7}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
\end{aligned}
$$

Ex. Find the first 4 nonzero terms of the Maclaurin series for $f(x)=e^{x}$, then write the series in sigma notation.

$$
\begin{array}{ll}
f(x)=e^{x} & f(0)=1 \\
f^{\prime}(x)=e^{x} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=e^{x} & f^{\prime \prime}(0)=1 \\
f^{\prime \prime \prime}(x)=e^{x} & f^{\prime \prime \prime}(a)=1
\end{array} \left\lvert\, \begin{aligned}
& f(x)=f(a)+\frac{f^{\prime}(c)}{1!} x^{\prime}+\frac{f^{\prime \prime}(c)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(c)}{3!} x^{3}+\ldots \\
&=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots \\
&=\sum_{n=0}^{\infty} \frac{1}{n=1} x^{n}=2 \\
& n=3
\end{aligned}\right.
$$

$$
\begin{gathered}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \quad \ln x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^{n}}{n} \\
\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
\end{gathered}
$$

We can use these to expand our functions

Ex. Find the first 4 non-zero terms and the general term for the Maclaurin series for $f(x)=\sin x^{2}$.

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots+\frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}+\ldots
$$

$$
\sin \left(x^{2}\right)=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\ldots+\frac{(-1)^{n}}{(2 n+1)!} x^{4 n+2}+\ldots
$$

$$
\left(x^{2}\right)^{2 n+1}=x^{2(2 n+1)}
$$

Ex. Find the first 4 non-zero terms and the general term for the Maclaurin series for $f(x)=x \cos \sqrt{x}$.

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+\frac{(-1)^{n}}{(2 n)!} x^{2 n}+\ldots \\
& \cos \sqrt{x}=1-\frac{x^{1}}{2!}+\frac{x^{2}}{4!}-\frac{x^{3}}{6!}+\ldots+\frac{(-1)^{n}}{(2 n)!} x^{n}+\ldots \\
& x \cos \sqrt{x}=x-\frac{x^{2}}{2!}+\frac{x^{3}}{4!}-\frac{x^{4}}{6!}+\ldots+\frac{(-1)^{n}}{(2 n)!} x^{n+1}+\ldots
\end{aligned}
$$

Ex. Find the first three non-zero terms of the Maclaurin series for $\int e^{-x^{2}} d x$

$$
\begin{aligned}
& e^{x}=1+x+\frac{1}{2} x^{2}+\ldots \\
& e^{-x^{2}}=1-x^{2}+\frac{1}{2} x^{4}+\ldots \\
& \int e^{-x^{2}} d x=C+x-\frac{1}{3} x^{3}+\frac{1}{10} x^{3}+\ldots
\end{aligned}
$$

Ex. Evaluate $\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{\pi}{6}\right)^{2 n}}{(2 n)!}=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$

Ex. Find a power series for $f(x)$ centered at $a=1$ if $f(1)=2$ and $f^{(n)}(1)=n!$.

$$
\begin{array}{ll}
f(1)=2 & f(x)=2+\frac{11}{1!}(x-1)^{1}+\frac{2 y}{2!}(x-1)^{2}+\frac{3 y}{3!}(x-1)^{3}+\ldots \\
f_{n=3}^{\prime}(1)=1! & 1+1+1 \\
f_{n=1}^{\prime \prime}(1)=2! & =2+\sum_{n=1}^{\infty}(x-1)^{n} \\
f^{\prime \prime \prime}(1)=3! &
\end{array}
$$

A Taylor polynomial considers only the first few terms of a Taylor series and can be used to approximate the value of the function.

Ex. Let f be a function such that $f(2)=4$, $f^{\prime}(2)=-1$, and $f^{\prime \prime}(2)=15$. Find T_{2}, the second-degree Taylor polynomial centered at

$$
\begin{gathered}
x=2 \text {. Approximate } f(1) . \\
T_{2}(x)=f(2)+\frac{f^{\prime \prime}(2)}{1!}(x-2)^{\prime}+\frac{f^{\prime \prime}(2)}{2!}(x-2)^{2} \\
=4+\frac{-1}{1}(x-2)+\frac{15}{2}(x-2)^{2} \\
f(1) \approx T_{2}(1)=4-(-1)+\frac{15}{2}(-1)^{2}
\end{gathered}
$$

Ex. Let $P_{4}(x)=15-3 x+6 x^{2}-14 x^{3}-7 x^{4}$ be the Taylor polynomial for $f(x)$ about $x=0$. Find $f^{\prime \prime \prime}(0)$.

Ex. $P(x)=-\frac{1}{2!}+\frac{1}{4!} x^{2}-\frac{1}{6!} x^{4}$ is the Taylor polynomial for $f(x)$ centered at $x=0$. Determine if f has a local max., local min, or neither at $x=0$.

$$
\begin{array}{ll}
f^{\prime}(0) \stackrel{?}{=} 0 & \text { local max } \rightarrow f^{\prime} \text { pos to nog } \\
0 x^{\prime} & \text { local minn } \rightarrow f^{\prime} \text { neg to pos. } \\
\text { local max } \rightarrow f^{\prime \prime}(0)<0 \\
\frac{f^{\prime \prime}(0)}{1!}=0 & \begin{array}{lll}
10 \text { is }
\end{array} \\
f^{\prime}(0)=0 & \text { crit. pt. } \\
& \\
& \frac{f^{\prime \prime \prime}(0)}{2!}=\frac{1}{4!} \rightarrow f^{\prime \prime}(0)>0 \\
& f^{\prime \prime}(0)=\frac{2!}{4!}>0 \rightarrow x=0 \text { is } \\
& \text { local min }
\end{array}
$$

