- Blue part is out of 50
- Green part is out of 50
\rightarrow Total of 100 points possible

Differential Equations

Remember: A differential equation is an equation that involves a function and some of its derivatives.

Ex. Solve $y^{\prime}=6 x^{2}-5$

$$
y=2 x^{3}-5 x+C
$$

Ex. Verify that $x=5$ is a solution to $3 x-2=13$.

$$
\begin{aligned}
3(5)-2 & =13 \\
15-2 & =13
\end{aligned}
$$

Ex. Verify that $y=e^{2 x}$ is a solution to $y^{\prime \prime}-3 y^{\prime}+2 y=0$

$$
\begin{aligned}
& y^{\prime}=e^{2 x} \cdot 2 \\
& y^{\prime \prime}=e^{2 x \cdot 4}
\end{aligned}
$$

$$
4 e^{2 x}-3\left(2 e^{2 x}\right)+2\left(e^{2 x}\right)=0
$$

$$
4 e^{2 x}-6 e^{2 x}+2 e^{2 x}=0
$$

A separable equation can be written

$$
\frac{d y}{d x}=f(x) g(y)
$$

\rightarrow To solve, we treat $\frac{d y}{d x}$ as a fraction.
\rightarrow Put the y 's on the left with $d y$, put x 's on the right with $d x$, and integrate each side.

Ex. Let $\frac{d P}{(d t)}=\frac{t^{2}}{\sqrt[2 P P]{ }}$, find the general solution.

$$
\begin{array}{ll}
\int p^{3} d p=-\frac{1}{2} t^{2} d t & \frac{1}{4} p^{4}=\frac{1}{6} t^{3} \\
\frac{1}{4} p^{4}=\frac{1}{6} t^{3}+c & p^{4}=\frac{2}{3} t^{3} \\
p^{4}=\frac{2}{3} t^{3}+D & p= \pm \sqrt[4]{\frac{2}{3} t^{3}}+c \\
p= \pm \sqrt[4]{\frac{2}{3} t^{3}+D} &
\end{array}
$$

Ex. Solve $\frac{d y}{d x}=\frac{y}{1+x}$

$$
\begin{aligned}
& \int \frac{1}{y} d y=\int \frac{1}{1+x} d x \\
& e^{\ln |y|}=e^{\ln |1+x|+C} \\
& |y|=e^{\ln |1+x|} \cdot e^{C} \quad D= \pm e^{c} \\
& y=D|1+x|
\end{aligned}
$$

Pract. 1) $\frac{d R}{d t}=\frac{t^{2}}{R}$

$$
\begin{aligned}
& R d R=A^{2} d t \\
& \frac{1}{2} R^{2}=\frac{1}{3} A^{3}+C \\
& R^{2}=\frac{2}{3} t^{3}+D \\
& R=\sqrt{\frac{2}{3} t^{3}+D}
\end{aligned}
$$

2)

$$
\begin{aligned}
\frac{d y}{d x} & =12 y^{2} \\
\frac{1}{y^{2}} d y & =12 d x \\
-\frac{1}{y} & =12 x+C \\
\frac{1}{y} & =-12 x+D \\
y & =\frac{1}{D-12 x}
\end{aligned}
$$

Def. An initial value problem (IVP) is a differential equation and a value of the solution.

Ex. Solve the IVP $\frac{d P}{d t}=3 P$ if $P(0)=5$.

$$
\begin{array}{lr}
\int \frac{1}{P} d P=3 d t & 5=D e^{3(0)} \\
\operatorname{l}^{2}|p|=3 t+C & D=5 \\
e^{3} & \\
|P|=e^{3 t} \cdot e^{c} & P=5 e^{3 t} \\
P=D e^{3 t} &
\end{array}
$$

Important: A solution must be a function that is differentiable over the largest interval containing the initial value and satisfying the original differential equation.

Ex. Find the solution to $\frac{d y}{d x}=\frac{x}{y}$ if $y(5)=-3$

$$
\begin{aligned}
& \int y d y=\int x d x \\
& \frac{1}{2} y^{2}=\frac{1}{2} x^{2}+C \\
& y^{2}=x^{2}+D \\
& y= \pm \sqrt{x^{2}+D}
\end{aligned}
$$

$$
\begin{aligned}
-3 & = \pm \sqrt{5^{2}+D} y \\
9 & =25+D \\
D & =-16
\end{aligned}
$$

$$
y=-\sqrt{x^{2}-16}
$$

$(4, \infty)$

Ex. Solve the $\operatorname{IVP} \frac{d y}{d x}=\frac{y+1}{x}, y(1)=2$, then sketch the solution.

$$
\begin{gathered}
y=D|x|-1 \\
2=D|1|-1 \\
D=3
\end{gathered}
$$

$$
\frac{1}{y+1} d y=\frac{1}{x} d x
$$

$$
y=3|x|-1
$$

$$
\begin{gathered}
y^{+1}|y+1|=\ln |x|+C=/ e^{\ln |x|} \cdot e^{c} \\
e^{c}+1=D|x|
\end{gathered}
$$

