## A Graphical Approach

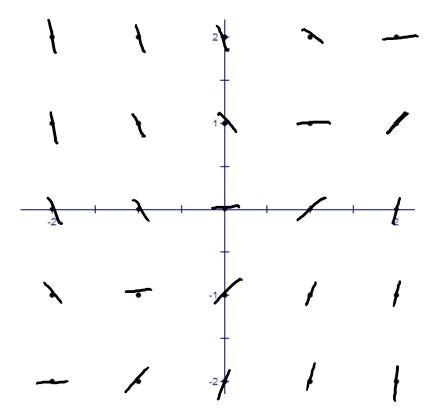
$$\underline{\mathrm{Ex.}}\,\frac{dy}{dx} = x^2 - y$$

We can't solve this differential equation, but we can find the slope of the solution at (0,2) -- assuming it passes through this point.

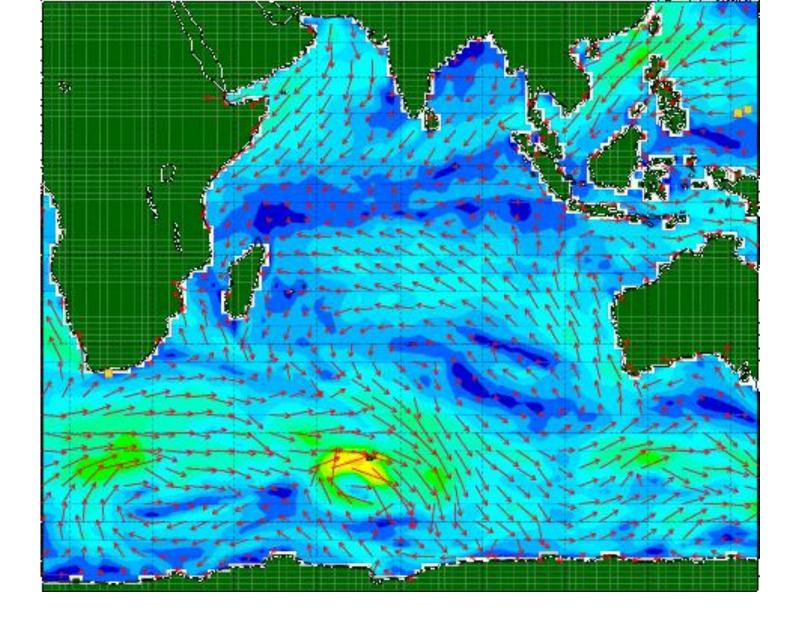
We can draw a segment through the point that has the appropriate slope: called a lineal element.

If we draw several of these lines, we get a good idea of what a solution would look like. This is called a <u>slope field</u> or <u>direction field</u>.

<u>Ex.</u> Draw a slope field for  $\frac{dy}{dx} = x - y$ , then sketch a solution that satisfies y(0) = 0.



<u>Here's</u> what it would look like if we used lots of points...





## A Numerical Approach

The slope field gives us an idea of what the solution curve looked like.

 $\rightarrow$ Euler's method will let us approximate values of the solution.

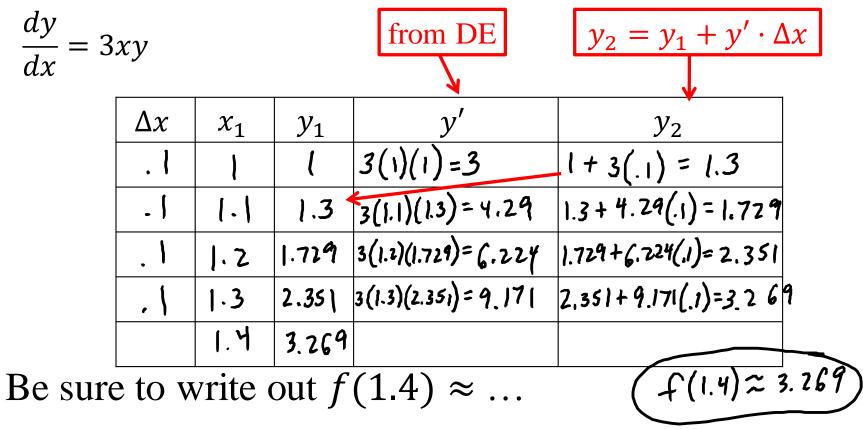
## Euler's Method

Starting at the initial value, find the equation of the tangent to the solution at that point.

- Follow the tangent line from the initial point for a short interval  $(\Delta x)$ .
- The point at which you end up is your new starting point, and you begin the process over.

| <u>Ex.</u> Consider the differential equation $\frac{dy}{dx} = 3xy$ .<br>particular solution to the differential equation |              |
|---------------------------------------------------------------------------------------------------------------------------|--------------|
| f(1) = 1. Use Euler's Method, starting at $x = 1$                                                                         |              |
| equal size, to approximate $f(1.4)$ .                                                                                     |              |
| $x_{1} = 1$ $y_{1} = 1$ $m_{1} = 3(1)(1) = 3$                                                                             | 1.2 1.4      |
| y = 1 + 3(x - 1)                                                                                                          |              |
| $X_{2} =  .2 \qquad Y_{2} =  +3(1.2-1) \qquad m_{2} = 3(1.2-1) \\ =  +3(.2) =  .6 \qquad = 5.7$                           |              |
| y = 1.6 + 5.76(x - 1.2)                                                                                                   | f(1.4)≈2.752 |
| $\chi_3 = 1.4$ $\gamma_2 = 1.6 + 5.76(1.4 - 1.2)$<br>= 1.6 + 5.76(.2) = 2.752                                             |              |

Ex. Redo the previous problem, using four steps of equal size.



 $\rightarrow$  The table is not the end of your answer.