Area Between Curves
 $\int^{b} f(x) d x-\int^{b} g(x) d x$

 The a rea between the curves can be found with:

$$
\begin{aligned}
A & =\int_{a}^{b}[f(x)-g(x)] d x \\
A & =\int_{a}^{b}\left[y_{t o p}-y_{b o t t o m}\right] d x
\end{aligned}
$$

Ex. Find the area of the region bounded by

$$
\begin{aligned}
A & =\int_{-1}^{2}\left[\left(x^{2}+1\right)-x\right] d x \\
& =\frac{1}{3} x^{3}+x-\left.\frac{1}{2} x^{2}\right|_{-1} ^{2} \\
& =\left(\frac{8}{3}+2-2\right)-\left(-\frac{1}{3}-1-\frac{1}{2}\right)
\end{aligned}
$$

Ex. Find the area of the region bounded by $y=x^{2}$ and $y=2 x-x^{2}$.

$$
x^{2}=2 x-x^{2}
$$

$$
2 x^{2}-2 x=0
$$

$$
\begin{aligned}
&=x(2-x) \\
& A=\int_{0}^{1}\left(2 x-x^{2}\right)-x^{2} d x \\
&=\int_{0}^{1}\left(2 x-2 x^{2}\right) d x=x^{2}-\left.\frac{2}{3} x^{3}\right|_{0} ^{1} \\
&=\left(1-\frac{2}{3}\right)-0=\frac{1}{3}
\end{aligned}
$$

Ex. Find the area of the region bounded by $y=x^{2}-x$ and $y=\frac{x}{\sqrt{x^{2}+1}}$.

Pract. Find the area of the region bounded by

$$
\begin{array}{r}
\text { a) } y=2-x^{2} \text { and } y=x \text { [No calculators] } \\
\int_{-2}^{1}\left[\left(2-x^{2}\right)-x\right] d x=\frac{9}{2}
\end{array}
$$

b) $y=e^{x}-1$ and $y=3 x$ [Calculators OK]

$$
1.904
$$

$$
\int_{0}\left[3 x-\left(e^{x}-1\right)\right] d x=1.629
$$

Ex. Find the area of the region bounded by $x=y^{2}-3$ and $y=\frac{1}{2} x$.

$$
\begin{aligned}
A & =\int_{-1}^{3} 2 y-\left(y^{2}-3\right) d y \\
& =y^{2}-\frac{1}{3} y^{3}+\left.3 y\right|_{-1} ^{3} \\
& =(9-9+9)-\left(1+\frac{1}{3}-3\right)
\end{aligned}
$$

