Other Applications

Thm. The average value of a function $f(x)$ over the interval $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Ex. Find the average value of $f(x)=\sin 5 x$ on $[10,30]$. ${ }_{30}$

$$
\frac{1}{30-10} \int_{10}^{\sin } S_{x} d x
$$

Ex. The temperature, in ${ }^{\circ} \mathrm{C}$, of a pond is a function W of time
t. The table below shows the temperature at selected times. Approximate the average temperature over the time interval $0 \leq t \leq 15$ using right-hand sums with 5 subintervals.

t	$W(t)$
0	20
3	31
6	28
9	24
12	22
15	21

$$
\begin{aligned}
& \frac{1}{15} \int_{0}^{15} w(t) d t \\
& =\frac{1}{15}[3 \cdot w(3)+3 \cdot w(6)+3 w(9)+3 w(12) \\
& +3 w(15)]
\end{aligned}
$$

$=25.2^{\circ} \mathrm{C}$

Def. The arc length of a curve on an interval $[a, b]$ is the length of the curve over the interval.

Thm. The arc length, s, of $f(x)$ on $[a, b]$ is given by

$$
s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Ex. Find the length of $y=x^{3 / 2}$ on $[0,5]$.

$$
y^{\prime}=\frac{3}{2} x^{1 / 2}
$$

$$
\begin{array}{rlr}
S & =\int_{0}^{5} \sqrt{1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}} d x=\int_{0}^{5} \sqrt{1+\frac{9}{4} x} d x \\
& =\int_{\pi}^{\pi \pi} u^{1 / 2} \cdot \frac{4}{9} d u=\left.\frac{4}{9} \frac{2}{3} n^{3 / 2}\right|_{8} ^{* *} & \begin{array}{l}
u=1+\frac{9}{4} x \\
d u=\frac{9}{4} d x \\
\frac{4}{9} d u=l^{5}
\end{array}
\end{array}
$$

Ex. Find the length of $f(x)=\int_{1}^{x} 2 \sqrt{4 t^{2}+2 t} d t$ on [1,2].

$$
\begin{aligned}
& f^{\prime}(x)=2 \sqrt{4 x^{2}+2 x} \\
& s=\int_{1}^{2} \sqrt{1+\left[2 \sqrt{4 x^{2}+2 x}\right]^{2}} d x=\int_{1}^{2} \sqrt{1+4\left(4 x^{2}+2 x\right)} d x \\
&=\int_{1}^{2} \sqrt{16 x^{2}+8 x+1} d x=\int_{1}^{2} \sqrt{(4 x+1)^{2}} d x=\int_{1}^{2}(4 x+1) d x \\
&=2 x^{2}+\left.x\right|_{1} ^{2}=(8+2)-(2+1)=7
\end{aligned}
$$

Ex. Find the length of $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ on $[1,2]$.

$$
\begin{aligned}
&=\frac{1}{6} x^{3}+\frac{1}{2} x^{-1} \\
& y^{\prime}=\frac{1}{2} x^{2}-\frac{1}{2} x^{-2} \\
& S=\int_{1}^{2} \sqrt{1+\left(\frac{1}{2} x^{2}-\frac{1}{2} x^{-2}\right)^{2}} d x
\end{aligned}
$$

