Warm up Problems

1. $\int\left(5 x^{3}-4 \sin x\right) d x=\frac{5}{4} x^{4}+4 \cos x+c$
2. $\int\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x=\ln |x|+x^{-1}+C$
3. $\int 7 e^{x} d x=7 e^{x}+C$

More With Integrals
Ex. $\int e^{3 x} d x=\frac{1}{3} e^{3 x}+C$

Ex. $\int(2 x-1)^{10} d x=\frac{1}{2} \frac{1}{11}(2 x-1)^{11}+C$

Ex.

$$
\text { x. } \begin{aligned}
\int \frac{t^{2}-1}{t} d t=\int \frac{t^{2}}{t}-\frac{1}{t} d t & =\int t-\frac{1}{t} d t \\
& =\frac{1}{2} t^{2}-\ln |t|+C
\end{aligned}
$$

Thm. Fundamental Theorem of Calculus If $f(x)$ is a continuous function on $[a, b]$, and if $\begin{gathered}F^{\prime}(x)=f(x) \text {, then } \\ b\end{gathered}$

$$
f(x) d x=F(b)-F(a)
$$

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=F(b)-F(a) \\
& \int_{a}^{b} g^{\prime}(x) d x=g(b)-g(a)
\end{aligned}
$$

\rightarrow The integral of the rate of change gives the total change.

$$
g(b)=g(a)+\int_{a}^{b} g^{\prime}(x) d x
$$

\rightarrow Ending value is the starting value plus the integral of the rate.

Ex. The rate at which people enter Sea World is
given by $E(t)=\frac{15600}{t^{2}-24 t+160}$. How many
people entered the park during park hours, 9am to 5 pm ? (Assume t is hours since midnight.)
$\int_{9}^{17} E(t) d t=6004.270$

Thm. Fundamental Theorem of Calculus If $f(x)$ is a continuous function on $[a, b]$, and if $F^{\prime}(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

- $F(x)$ is an antiderivative of $f(x)$.
- Find an antiderivative, then plug in the endpoints

$$
\begin{aligned}
& \text { Ex. } \int_{3}^{5} 2 x d x=\left.x^{2}\right|_{3} ^{5}=5^{2}-3^{2}=25-9=16 \\
& \text { Ex. } \int_{0}^{\pi / 2} \sin x d x=-\left.\cos x\right|_{0} ^{\pi / 2}=\left(-\cos \frac{\pi}{2}\right)-(-\cos 0)=1
\end{aligned}
$$

Ex. $\int_{0}^{2} e^{x} d x=\left.e^{x}\right|_{0} ^{2}=e^{2}-e^{0}=e^{2}-1$

Pract. $\int_{1}^{2} x^{4} d x=\left.\frac{1}{5} x^{5}\right|_{1} ^{2}=\frac{32}{5}-\frac{1}{5}=\frac{31}{5}$

- Don’t write " $+c$ " on definite integrals
- We could use a calculator to get the answer, but this way we get the exact answer, not just a decimal approximation

Ex. Let R be the region bounded by $y=\frac{1}{x}$, the x-axis, $x=1$, and $x=4$. Find a value for h so that the line $x=h$ splits R into two regions of equal area.

$$
\begin{array}{ll}
\int_{1}^{h} \frac{1}{x} d x=\frac{1}{2} \int \frac{1}{x} d x \\
\left.\ln |x|\right|_{1} ^{n}=\left.\frac{1}{2} \ln |x|\right|_{1} ^{4} & \ln h=\ln \left(4^{1 / 2}\right) \\
h=2
\end{array}
$$

