Warm up Problems

Assume for a continuous and differentiable function, $f(-1)=-2$ and $f(3)=6$. Determine if the following statement is guaranteed by one of our theorems, then state the theorem that was used:

1) $f(c)=1$ for some c on the interval $[-1,3]$. T, IVT
2) $f^{\prime}(c)=0$ for some c on the interval $[-1,3]$. F
3) $-2 \leq f(c) \leq 6$ for all c on the interval $[-1,3]$. F
4) $f^{\prime}(c)=2$ for some c on the interval $[-1,3] . T$, MVT

Review of Chapter 4

Strategy for Related Rates "PGWEDA"

$\mathrm{P})$ Draw a picture \longrightarrow Change $=$ variable
G) Ident iven y
"Changes at a rate of ..."

Involves time

Use the picture
D) Ta me dernative with respect to time
A) Plug in values to get your answer

$$
\begin{array}{r}
\frac{d \theta}{d t}=3 \\
x=3 \\
\frac{d x}{d t}=?
\end{array}
$$

Ex. In the triangle shown, θ increases at a constant rate of 3 radians per minute. At what rate is x increasing when x equals 3 units?

$$
\begin{aligned}
& \sin \theta=\frac{x}{5} \\
& \cos \theta \frac{d \theta}{d t}=\frac{1}{5} \frac{d x}{d t} \\
& \left(\frac{4}{5}\right) 3=\frac{1}{5} \frac{d x}{d t} \\
& 12=\frac{d x}{d t}
\end{aligned}
$$

Ex. $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=\lim _{x \rightarrow 0} \frac{-\sin x}{1}=0$
Ex. $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}} \stackrel{L}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{2 x} \stackrel{L}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\infty$
Ex. $\lim _{x \rightarrow 0} \frac{e^{x}}{x^{2}}=\infty$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{x}}{x^{3}}=\lim \quad x_{x \rightarrow 0} x^{2}=+0 \\
& \lim _{x \rightarrow 0} x^{3}= \pm 0
\end{aligned}
$$

Ex. Let $f(x)=\frac{x-4}{x^{2}}$ for $x \neq 0$. Find and classify all $f(x)=\frac{x}{x^{2}}-\frac{4}{x^{2}}$ critical points. Find all inflection points. Find the
global maximin values on $[1,100]$.

$$
\begin{aligned}
& f^{\prime}(x)=-x^{-2}+8 x^{-3} \\
& =-\frac{1}{x^{2}}+\frac{8}{x^{3}} \\
& =\frac{-x+8}{x^{3}}=0 \\
& \text { crit.pt. } \longrightarrow x=8 \\
& \stackrel{-1+,}{\longrightarrow}{ }_{8}^{\longrightarrow} f^{\prime}
\end{aligned}
$$

Strategy for Optimization

1) Draw a picture, if appropriate
2) Writ oiv
ıcludino an
Find the largest, smallest, closest

Maximize, minimize

5) Ta . the derivative
6) Set equal to zero and solve

Calculators Allowed

$\begin{array}{llll}\text { 1.B 2.B } & \text { 2.B } & \text { 4. A }\end{array}$
6. C 7. $375,000 \mathrm{ft}^{2}$ 8. . $321 \mathrm{rad} / \mathrm{sec}$.
9. $-5.890 \mathrm{~cm}^{3} / \mathrm{hr} . \quad 10 .-1.014 \mathrm{~m} / \mathrm{s}$

> | | No Calculators | | |
| :--- | :---: | :---: | :---: |
| 1. D | 2. C | $3 . \mathrm{E}$ | |
| 5. a. $(1,3)$ | b. -3 | | |

6. a. $x=-2$ because f^{\prime} goes from pos. to neg.
b. $x=4$ because f^{\prime} goes from neg. to pos.
c. $-1<x<1$ and $3<x<5$ because $f \mathbf{O}$ is incr.
7. a. horiz. tan at $x=\sqrt{2}$ and $x=-\sqrt{2}$, both local \min. because f^{\prime} goes from neg. to pos.
b. concave up for all $x \neq 0$ because $f^{\prime \prime}>0$
c. below, because graph is concave up
8. f twice-diff. $\rightarrow f$ continuous \rightarrow IVT applies $f(2)<0<f(4) \rightarrow f(c)=0$ on interval
9. a. $x=1$ and $x=3$ because slope of f^{\prime} changes signs
b. $x=4$ because $f(0)=9, f(4)=2, f(5)=6$, and $x=1$ is not a max or min.
c. $y-30=16(x-5)$
