Implicit Differentiation

Explicit Functions $\rightarrow y=f(x)$

$$
y=\sin x+e^{x}
$$

Find the slope of the

$$
y=x^{5}+3 x^{2}+2
$$ graph at the point

Implicit Functions \rightarrow implies $y=f(x)$

$$
x^{2}+y^{2}=9
$$

Find the slope of the graph at the point

To differentiate an implicit function, we differentiate term-by-term:

- Take the derivative of x-function as usual.
- The derivative of y-function gets multiplied by y^{\prime}.
- If x 's and y 's are in the same term, use product rule.

After differentiating, solve for y^{\prime}.

Ex. If $\ln y+x^{2} y^{4}+e^{x}=5$, find $\frac{d y}{d x}$.

$$
\begin{gathered}
\frac{1}{y} y^{\prime}+x^{2} \cdot 4 y^{3} y^{\prime}+y^{4} \cdot 2 x+e^{x}=0 \\
\frac{1}{y} y^{\prime}+4 x^{2} y^{3} y^{\prime}=-2 x y^{4}-e^{x} \\
y^{\prime}\left(\frac{1}{y}+4 x^{2} y^{3}\right)=-2 x y^{4}-e^{x} \\
y^{\prime}=\frac{-2 x y^{4}-e^{x}}{\frac{1}{y}+4 x^{2} y^{3}}
\end{gathered}
$$

Ex. Find the slope of the line tangent to

$$
\begin{array}{ll}
y=x+\cos (x y) \text { at the point where } x=0 . \\
y^{\prime}=1-\sin (x y)\left(x y^{\prime}+y \cdot 1\right) & y=0+\cos (0 \cdot y) \\
y^{\prime}=1-\sin (0 \cdot 1)\left(0 y^{\prime}+1\right) & y=1 \\
y^{\prime}=1
\end{array}
$$

Ex. If $\ln y+x^{2} y^{4}+e^{x}=5$, find $\frac{d^{2} y}{d x^{2}} . y^{\prime \prime}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-2 x y^{4}-e^{x}}{\frac{1}{y}+4 x^{2} y^{3}} \\
& \frac{d y}{d x^{2}}=\frac{\left(\frac{1}{y}+4 x^{2} y^{3}\right)\left(-2 x \cdot 4 y^{3}\left(y^{1}+y^{4}(-2)-e^{x}\right)-\left(-2 x y^{4}-e^{x}\right)\binom{-y^{-2}(y)+4 y^{2} \cdot 3 y^{2} y^{2}}{+y^{3} \cdot 8 x}\right.}{\left(\frac{1}{y}+4 x^{2} y^{3}\right)}
\end{aligned}
$$

Ex. Find the coordinates of any point on $x^{2}+y^{2}=16$ where the tangent line has the slope of -1 .

$$
\begin{aligned}
2 x+2 y y^{\prime} & =0 \\
y^{\prime} & =-\frac{x}{y}=-1
\end{aligned}
$$

$$
y=x
$$

$$
\begin{aligned}
& x^{2}+y^{2}=16 \\
& x^{2}+x^{2}=16 \\
& 2 x^{2}=16 \\
& x^{2}=8 \\
& x= \pm \sqrt{8} \\
&(\sqrt{8}, \sqrt{8})(-\sqrt{8},-\sqrt{8})
\end{aligned}
$$

Ex. Let $f(x)=x^{3}+x$. If $g(x)=f^{-1}(x)$, find $g^{\prime}(10)$.

$$
\text { and } f(2)=10
$$

$g(x)$

$$
\begin{aligned}
& x=y^{3}+y \quad g(10)=2 \\
& 1=3 y^{2} y^{\prime}+1 \cdot y^{\prime} \\
& 1=3(2)^{2} y^{\prime}+y^{\prime} \\
& 1=13 y^{\prime}
\end{aligned} \quad y^{\prime}=\frac{1}{13}
$$

