## Calculus with Polar Coordinates



The area bounded by  $r = f(\theta), \alpha \le \theta \le \beta$  is

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta$$

<u>Ex.</u> Find the area of one petal of  $r = 3 \cos 3\theta$  $A = 2 \cdot \frac{1}{2} \int (3 \cos 30)^2 d0 = \int 9 \cos^2(30) d0$   $= \int \frac{9}{2} (1 + \cos 60) d0 = \frac{9}{2} (0 + \frac{1}{6} \sin 60) \Big|_0^{\frac{10}{6}}$  $\frac{0}{0} \frac{3}{3} \cos \frac{30}{2} = 3$   $\frac{1}{76} \frac{3}{3} \cos \frac{11}{2} = 0$  $=\frac{9}{2}\left(\frac{\pi}{6}+\frac{1}{6}\right)\pi -\frac{9}{2}\left(0+\frac{1}{6}\right)$ T/G 31 - 17/



Ex. Find the area inside  $r = 3 \sin \theta$  and

Ex. The curve is described by the equation  $r = \theta + \sin 2\theta$ , for  $0 \le \theta \le \pi$ . a) Find the area bounded by the curve and the *x*-axis.

$$A = \frac{1}{2} \int (0 + \sin 20)^2 dQ = 4.382$$

![](_page_5_Figure_2.jpeg)

b) Find the angle  $\theta$  that corresponds to the point with *x*-coordinate -2.

$$\chi = r \cos 0 = (0 + \sin 20) \cos 0 = -2$$
  
 $0 = 2.786$ 

$$r = \theta + \sin 2\theta$$
  
c) For  $\frac{\pi}{3} < \theta < \frac{2\pi}{3}, \frac{dr}{d\theta}$  is negative. What does this say about the curve?  
As  $\theta$  increases the graph gets closer  
to the origin

d) A particle is moving along the curve so that its position is (x(t), y(t)) and such that  $\frac{d\theta}{dt} = 5$ . Find  $\frac{dy}{dt}$  at the instant that  $\theta = \frac{\pi}{2}$  and interpret your answer.

$$y = (0 + in 20) \sin 0$$

$$dy = \frac{d}{d0} \left( (0 + in 20) \sin 0 \right) \frac{d0}{dt}$$

$$dv = \frac{d}{d0} \left( (0 + in 20) \sin 0 \right) \frac{d0}{dt}$$

$$dv = \frac{d}{d0} \left( (0 + in 20) \sin 0 \right) \frac{d0}{dt}$$

$$dv = \frac{d}{dt} \left( \frac{1}{10} + \frac{1}{2} - 5 \right)$$

$$dv = \frac{1}{10} + \frac{$$

Matching Time!

## Unit 9 Progress Check: MCQ Part A

- Do them all
- Unit 9 Progress Check: MCQ Part B
- Do them all