Calculus with Polar Coordinates
Ex. Graph all points of intersection

$$
\begin{aligned}
& \text { of } r=\frac{1-2 \cos \theta}{\theta=0} \text { and } \frac{r=1 .}{\theta=\pi} \\
& 1-2 \cos \theta=1 \\
& -2 \cos \theta=0 \\
& \cos \theta=0 \\
& \theta=\frac{\pi}{2}, \frac{3 \pi}{2} \\
& x=r \cos \theta=1 \cos \frac{\pi}{2}=0 \\
& y=r \sin \theta=1 \sin =1 \\
& (0,1)(0,-1)
\end{aligned}
$$

The area bounded by $r=f(\theta), \alpha \leq \theta \leq \beta$ is

$$
A=\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} d \theta
$$

Ex. Find the area of one petal of $r=3 \cos 3 \theta$

$$
\begin{array}{l|l}
\theta & 3 \cos 3 \theta \\
\hline 0 & 3 \cos 0=3 \\
\pi / 6 & 3 \cos \frac{\pi}{2}=0
\end{array}
$$

$$
\begin{aligned}
& A=2 \cdot \frac{1}{2} \int_{0}^{\pi / 6}(3 \cos 3 \theta)^{2} d \theta=\int_{0}^{\pi / 6} 9 \cos ^{2}(3 \theta) d \theta \\
& =\int_{0}^{\pi / 6} \frac{9}{2}(1+\cos 6 \theta) d \theta=\left.\frac{9}{2}\left(\theta+\frac{1}{6} \sin 6 \theta\right)\right|_{0} ^{4 / 6} \\
& =\frac{9}{2}\left(\frac{\pi}{6}+\frac{1}{6}-\frac{\pi}{2} \pi\right)-\frac{9}{2}\left(0+\frac{1}{6} \operatorname{m}_{0}(0)\right) \\
& =\frac{3 \pi}{4}
\end{aligned}
$$

Ex. Find the area between the inner and outer loops of the curve $r=1-2 \cos \theta$

$0=1-2 \cos \theta$
$\cos \theta=\frac{1}{2}$
$\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$

Ex. Find the area inside $r=3 \sin \theta$ and outside $r=1+\sin \theta$.

Ex. The curve is described by the equation $r=\theta+\sin 2 \theta$, for $0 \leq \theta \leq \pi$.
a) Find the area bounded by the curve and the x-axis.

$$
A=\frac{1}{2} \int_{0}^{\pi}(\theta+\sin 2 \theta)^{2} d \theta=4.382
$$

b) Find the angle θ that corresponds to the point with x-coordinate -2 .

$$
\begin{array}{r}
x=r \cos \theta=(\theta+\sin 2 \theta) \cos \theta=-2 \\
\theta=2.786
\end{array}
$$

$$
r=\theta+\sin 2 \theta
$$

c) For $\frac{\pi}{3}<\theta<\frac{2 \pi}{3}, \frac{d r}{d \theta}$ is negative. What does this say about the curve?

As θ increases, the graph gets closer to the origin
d) A particle is moving along the curve so that its position is $(x(t), y(t))$ and such that $\frac{d \theta}{d t}=5$. Find $\frac{d y}{d t}$ at the instant that $\theta=\frac{\pi}{2}$ and interpret your answer.

$$
\begin{aligned}
& y=(\theta+\sin 2 \theta) \sin \theta \\
& \frac{d y}{d t}=\frac{d}{d \theta}((\theta+\sin 2 \theta) \dot{\sin }) \frac{d \theta}{d t} \\
& \left.\frac{d y}{d t}\right|_{\theta=\frac{\pi}{2}}=-5
\end{aligned}
$$

When $\theta=\frac{\pi}{2}, y$ is decreasing at this rate as t increases

Matching Time!

Unit 9 Progress Check: MCQ Part A

- Do them all

Unit 9 Progress Check: MCQ Part B

- Do them all

