t (seconds)	0	60	90	120	135	150
$f(t)$ (gallons per second)	0	0.1	0.15	0.1	0.05	0

1. A customer at a gas station is pumping gasoline into a gas tank. The rate of flow of gasoline is modeled by a differentiable function f, where $f(t)$ is measured in gallons per second and t is measured in seconds since pumping began. Selected values of $f(t)$ are given in the table.
(a) Using correct units, interpret the meaning of $\int_{60}^{135} f(t) d t$ in the context of the problem. Use a right Riemann sum with the three subintervals $[60,90],[90,120]$, and $[120,135]$ to approximate the value of $\int_{60}^{135} f(t) d t$.
(b) Must there exist a value of c, for $60<c<120$, such that $f^{\prime}(c)=0$? Justify your answer.
(c) The rate of flow of gasoline, in gallons per second, can also be modeled by $g(t)=\left(\frac{t}{500}\right) \cos \left(\left(\frac{t}{120}\right)^{2}\right)$ for $0 \leq t \leq 150$. Using this model, find the average rate of flow of gasoline over the time interval $0 \leq t \leq 150$.

Show the setup for your calculations.
(d) Using the model g defined in part (c), find the value of $g^{\prime}(140)$. Interpret the meaning of your answer in the context of the problem.
2. Stephen swims back and forth along a straight path in a 50 -meter-long pool for 90 seconds. Stephen's velocity is modeled by $v(t)=2.38 e^{-0.02 t} \sin \left(\frac{\pi}{56} t\right)$, where t is measured in seconds and $v(t)$ is measured in meters per second.
(a) Find all times t in the interval $0<t<90$ at which Stephen changes direction. Give a reason for your answer.
(b) Find Stephen's acceleration at time $t=60$ seconds. Show the setup for your calculations, and indicate units of measure. Is Stephen speeding up or slowing down at time $t=60$ seconds? Give a reason for your answer.
(c) Find the distance between Stephen's position at time $t=20$ seconds and his position at time $t=80$ seconds. Show the setup for your calculations.
(d) Find the total distance Stephen swims over the time interval $0 \leq t \leq 90$ seconds. Show the setup for your calculations.
3. A bottle of milk is taken out of a refrigerator and placed in a pan of hot water to be warmed. The increasing function M models the temperature of the milk at time t, where $M(t)$ is measured in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ and t is the number of minutes since the bottle was placed in the pan. M satisfies the differential equation $\frac{d M}{d t}=\frac{1}{4}(40-M)$. At time $t=0$, the temperature of the milk is $5^{\circ} \mathrm{C}$. It can be shown that $M(t)<40$ for all values of t.
(a) A slope field for the differential equation $\frac{d M}{d t}=\frac{1}{4}(40-M)$ is shown. Sketch the solution curve through the point $(0,5)$.

(b) Use the line tangent to the graph of M at $t=0$ to approximate $M(2)$, the temperature of the milk at time $t=2$ minutes.
(c) Write an expression for $\frac{d^{2} M}{d t^{2}}$ in terms of M. Use $\frac{d^{2} M}{d t^{2}}$ to determine whether the approximation from part (b) is an underestimate or an overestimate for the actual value of $M(2)$. Give a reason for your answer.
(d) Use separation of variables to find an expression for $M(t)$, the particular solution to the differential equation $\frac{d M}{d t}=\frac{1}{4}(40-M)$ with initial condition $M(0)=5$.

Graph of f^{\prime}
4. The function f is defined on the closed interval $[-2,8]$ and satisfies $f(2)=1$. The graph of f^{\prime}, the derivative of f, consists of two line segments and a semicircle, as shown in the figure.
(a) Does f have a relative minimum, a relative maximum, or neither at $x=6$? Give a reason for your answer.
(b) On what open intervals, if any, is the graph of f concave down? Give a reason for your answer.
(c) Find the value of $\lim _{x \rightarrow 2} \frac{6 f(x)-3 x}{x^{2}-5 x+6}$, or show that it does not exist. Justify your answer.
(d) Find the absolute minimum value of f on the closed interval $[-2,8]$. Justify your answer.

x	0	2	4	7
$f(x)$	10	7	4	5
$f^{\prime}(x)$	$\frac{3}{2}$	-8	3	6
$g(x)$	1	2	-3	0
$g^{\prime}(x)$	5	4	2	8

5. The functions f and g are twice differentiable. The table shown gives values of the functions and their first derivatives at selected values of x.
(a) Let h be the function defined by $h(x)=f(g(x))$. Find $h^{\prime}(7)$. Show the work that leads to your answer.
(b) Let k be a differentiable function such that $k^{\prime}(x)=(f(x))^{2} \cdot g(x)$. Is the graph of k concave up or concave down at the point where $x=4$? Give a reason for your answer.
(c) Let m be the function defined by $m(x)=5 x^{3}+\int_{0}^{x} f^{\prime}(t) d t$. Find $m(2)$. Show the work that leads to your answer.
(d) Is the function m defined in part (c) increasing, decreasing, or neither at $x=2$? Justify your answer.
6. Consider the curve given by the equation $6 x y=2+y^{3}$.
(a) Show that $\frac{d y}{d x}=\frac{2 y}{y^{2}-2 x}$.
(b) Find the coordinates of a point on the curve at which the line tangent to the curve is horizontal, or explain why no such point exists.
(c) Find the coordinates of a point on the curve at which the line tangent to the curve is vertical, or explain why no such point exists.
(d) A particle is moving along the curve. At the instant when the particle is at the point $\left(\frac{1}{2},-2\right)$, its horizontal position is increasing at a rate of $\frac{d x}{d t}=\frac{2}{3}$ unit per second. What is the value of $\frac{d y}{d t}$, the rate of change of the particle's vertical position, at that instant?

2023 AB Free Response Answers

1)

a) Amount of gas, in gallons, pumped from $t=60$ to $t=135 ; 8.25$
b) $\frac{f(120)-f(60)}{120-60}=0 ; f$ is diff. and therefore cont., so c exists by MVT
c) 0.096
d) -0.005 ; rate at which gas flows into the tank is decreasing at a rate of $0.005 \mathrm{gal} / \mathrm{sec} / \mathrm{sec}$
2)
a) $t=56$ because v changes signs
b) $-0.036 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$; speeding up because $v(60)$ and $a(60)$ are the same sign
c) 23.384
d) 62.164
3)
a) $\rightarrow \rightarrow \rightarrow$
b) 22.5
c) $\frac{d^{2} M}{d t^{2}}=-\frac{1}{16}(40-M) ;$ overestimate because $\frac{d^{2} M}{d t^{2}}<0$
d) $M=40-35 e^{-t / 4}$
4)
a) Neither, f^{\prime} doesn't change signs at $x=6$
b) $(-2,0)$ and $(4,6)$ because f^{\prime} is decreasing
c) 3
d) 1
5)
a) 12
b) Concave down, $k^{\prime \prime}(4)<0$
c) 37
d) Increasing, $m^{\prime}(2)>0$
6)
a)
b) No points where tangent line is horizontal
c) $\left(\frac{1}{2}, 1\right)$
d) $-\frac{8}{9}$

